电解液添加剂稳定水系电池锌负极界面的研究进展
时文超, 刘宇, 张博冕, 李琪, 韩春华, 麦立强

Research progress and prospect on electrolyte additives for stabilizing the zinc anode interface in aqueous batteries
Wenchao SHI, Yu LIU, Bomian ZHANG, Qi LI, Chunhua HAN, Liqiang MAI
图4 (a) H2OSacSac阴离子在Zn (0001)表面的吸附能[69](b) 锌负极界面在引入Sac添加剂前后的EDL结构示意图[69](c)Sac/ZnSO4ZnSO4 电解液中Zn-Cu电池的库仑效率[69](d)ZnSO4 和添加MSGZnSO4 电解液中,锌/电解液界面沉积行为示意图[78](e) 在设计的电解液中循环20次前后锌电极的XRD谱图[71](f) Zn-V2O5 电池在0.8 A/g的电流密度下的长循环性能和效率图[71](g) 不同电解液pH演变和OAc-阴离子诱导的界面pH缓冲机制的示意图[79]
Fig. 4 (a) The adsorption energy of H2O, Sac, and Sac anions on Zn (0001) surface[69]; (b) The schematic descriptions of EDL structure before and after introducing Sac[69]; (c) The CE of Zn-Cu cells using Sac/ZnSO4 and ZnSO4 electrolyte[69]; (d) Schematic of Zn/electrolyte interface behaviors during Zn deposition in ZnSO4 and ZnSO4 electrolyte with MSG[78]; (e) XRD patterns of Zn electrode before and after 20 cycles in the designed electrolyte[71]; (f) Plot of long cycle performance and efficiency of Zn-V2O5 cells at 0.8 A/g current density[71]; (g) Schematic illustration of the pH evolution of different electrolytes and the interfacial pH buffer mechanism enabled by the OAc-anion[79]