电解液添加剂稳定水系电池锌负极界面的研究进展
时文超, 刘宇, 张博冕, 李琪, 韩春华, 麦立强

Research progress and prospect on electrolyte additives for stabilizing the zinc anode interface in aqueous batteries
Wenchao SHI, Yu LIU, Bomian ZHANG, Qi LI, Chunhua HAN, Liqiang MAI
图7 (a) 添加和不添加GO添加剂时锌负极表面电场分布,矢量场描述了电场的方向[91](b)(c) 制备的石墨烯量子点TEM图和HRTEM(c中的插图)[92](d) 云母衬底上GQDsAFM图和初始线A-B对应的高度剖面[92](e)2 mA/cm2 下,添加和不添加GQDsZn||Zn对称电池的长循环曲线和相应的电压曲线[92](f) 在云母上的纯C3N4QDs()和在高定向热解石墨上ZnSO4 水系电解液中的C3N4QDs(),插图为对应线条的高度轮廓[93](g)(o)100 μA/cm2 的电流密度下,含C3N4QDs (g)(j) 和不含C3N4QDs(k)(o)HOPGZn沉积的原位AFM[93](p) 使用[BMIM]OTF添加剂稳定锌沉积过程的原理图[95](q)5 mA/cm225 mAh/cm2 下的循环性能[95]
Fig. 7 (a) The electric field distribution on the surface of zinc anode with and without GO electrolyte additive. The vectorial field describes the direction of the electric field[91]; (b)(c) TEM and HRTEM (insert in c) images of as-prepared GQDs[92]; (d) AFM image of the GQDs on the mica substrate and corresponding height profile of the origin line A-B[92]; (e) Long-term cycling profiles of the Zn||Zn symmetric cells with and without GQDs additive at 2 mA/cm2 and the corresponding voltage profiles[92]; (f) Pristine C3N4QDs on mica (left) and the C3N4QDs in ZnSO4 aqueous electrolyte on HOPG (right), the inset is the height profiles of the corresponding lines[93]; (g)(o) In situ AFM images of Zn electrodeposits on HOPG with a current density of 100 μA/cm2 in electrolyte with C3N4QDs (g)(j) and without C3N4QDs (k)(o)[93]; (p) Schematic illustration of using [BMIM]OTF additive to stabilize the Zn deposition process[95]; (q) Cycling performances at 5 mA/cm2 and 25 mAh/cm2[95]