[1] BROUSSELY M, BIENSAN P, BONHOMME F, et al. Main aging mechanisms in Li ion batteries[J]. Journal of Power Sources, 2005, 146(1):90-96.
[2] DUBARRY M, LIAW B Y. Identify capacity fading mechanism in a commercial LiFePO4 cell[J]. Journal of Power Sources, 2009, 194(1):541-549.
[3] DUBARRY M, TRUCHOT C, LIAW B Y. Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs[J]. Journal of Power Sources, 2014, 258:408-419.
[4] BUCHBERGER I, SEIDLMAYER S, POKHAREL A, et al. Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2 cells using XRD, PGAA, and AC impedance[J]. Journal of the Electrochemical Society, 2015, 162(14):A2737-A2746.
[5] SU L, ZHANG Y, ZHANG J, et al. Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments[J]. Applied Energy, 2016, 163:201-210.
[6] ECKER M, NIETO N, KAEBITZ S, et al. Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithiumion batteries[J]. Journal of Power Sources, 2014,248:839-851.
[7] LIAW B Y, JUNGST R G, NAGASUBRAMANIAN G, et al. Modeling capacity fade in lithium-ion cells[J]. Journal of Power Sources, 2005, 140(1):157-161.
[8] LI Z, LU L, OUYANG M G, et al. Modeling the capacity degradation of LiFePO4/graphite batteries based on stress coupling analysis[J]. Journal of Power Sources, 2011, 196(22):9757-9766.
[9] BURNS J C, KASSAM A, SINHA N N, et al. Predicting and extending the lifetime of Li-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(9):A1451-A1456.
[10] KAISER R. Optimized battery-management system to improve storage lifetime in renewable energy systems[J]. Journal of Power Sources, 2007, 168(1):58-65.
[11] SCHUSTER S F, BACH T, FLEDER E, et al. Nonlinear aging characteristics of lithium-ion cells under different operational conditions[J]. Journal of Energy Storage, 2015, 1:44-53.
[12] SARASKETA-ZABALA E, AGUESSE F, VILLARREAL I, et al. Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps[J]. Journal of Physical Chemistry C, 2015, 119(2):896-906.
[13] KLETT M, ERIKSSON R, GROOT J, et al. Non-uniform aging of cycled commercial LiFePO4//graphite cylindrical cells revealed by post-mortem analysis[J]. Journal of Power Sources, 2014, 257:126-137.
[14] WANG J, PUREWAL J, LIU P, et al. Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives:Part 1, aging mechanisms and life estimation[J]. Journal of Power Sources, 2014, 269:937-948.
[15] HAN X, OUYANG M, LU L, et al. Cycle life of commercial lithiumion batteries with lithium titanium oxide anodes in electric vehicles[J]. Energies, 2014, 7(8):4895-4909.
[16] BACH T C, SCHUSTER S F, FLEDER E, et al. Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression[J]. Journal of Energy Storage, 2016, 5:212-223.
[17] STEVENS D A, YING R Y, FATHI R, et al. Using high precision coulometry measurements to compare the degradation mechanisms of NMC/LMO and NMC-only automotive scale pouch cells[J]. Journal of the Electrochemical Society, 2014, 161(9):A1364-A1370.
[18] TRUCHOT C, DUBARRY M, LIAW B Y. State-of-charge estimation and uncertainty for lithium-ion battery strings[J]. Applied Energy, 2014, 119:218-227.
[19] CHANCELIER L, SANTINI C C, GUTEL T, et al. Performances of lithium-ion cells constituted of NMC//LTO electrodes and ionic liquid or carbonates-based electrolytes[J]. ECS Transactions, 2014, 61(27):69-77.
[20] PINSON M B, BAZANT M Z. Theory of SEI formation in rechargeable batteries:Capacity fade, accelerated aging and lifetime prediction[J]. Journal of The Electrochemical Society, 2013,160(2):A243-A250. |