[1] 武怿达,赵俊年,詹元杰,等.锂电池百篇论文点评(2018.10.1-2018.11.30)[J]. 储能科学与技术,2019, 8(1):14-25. WU Yida, ZHAO Junnian, ZHAN Yuanjie, et al. Reviews of selected 100 recent papers for lithium batteries(Oct. 12018 to Nov. 30, 2018)[J]. Energy Storage Science and Technology, 2019, 8(1):14-25.
[2] 杨云龙,徐自强,吴孟强,等.锂离子动力电池荷电状态联合估计[J]. 科学技术与工程,2018, 18(22):60-65. YANG Yunlong,XU Ziqiang, WU Mengqiang,et al. Joint estimation of state-of-charge for lithium ion power battery[J]. Science Technology and Engineering, 2019, 8(1):14-25.
[3] 张持健,陈航.锂电池SOC预测方法综述[J].电源技术,2016, 40(6):1318-1320. ZHANG Chijian, CHEN Hang. Review of state of charge estimation methods for lithium battery[J]. Chinese Journal of Power Sources, 2016, 40(6):1318-1320.
[4] 欧阳剑,李迪,刘俊城.电动汽车车用动力电池荷电状态估算方法研究综述[J]. 机电工程技术,2016, 45(1):52-56. OUYANG jian, LI Di, LIU Juncheng. The overview of research of power battery SOC estimation methods use for electric vehicle[J]. Mechanical & Electrical Engineering Technology, 2016, 45(1):52-56.
[5] 张方亮,黄泽波,李占锋.不同放电倍率下锂电池SOC估算分析研究[J].机械设计与制造,2018(6):262-265. ZHANG Fangliang, HUANG Zebo, LI Zhanfeng. The analysis of lithium battery soc estimation under different discharge rate[J].Machinery Design & Manufacture, 2018(6):262-265.
[6] 程泽, 杨磊, 孙幸勉. 基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计[J]. 中国电机工程学报, 2018:doi:10.13334/j.0258-8013.pcsee.170992. CHENG Ze, YANG Lei, SUN Xingmian. State of charge and state of health estimation of Li-ion batteries based on adaptive square-root Unscented Kalman filters[J]. Proceedings of the CSEE, 2018:doi:10.13334/j.0258-8013.pcsee.170992.
[7] 罗勇, 赵小帅, 祁朋伟, 等. 车用动力电池二阶RC建模及参数辨识[J]. 储能科学与技术, 2019, 8(4):738-744. LUO Yong, ZHAO Xiaoshuai, QI Pengwei, et al. Second-order RC modeling and parameter identification of electric vehicle power battery[J]. Energy Storage Science and Technology, 2019, 8(4):738-744.
[8] 梁奇. 基于无迹卡尔曼滤波的锂电池SOC估算[D]. 绵阳:西南科技大学, 2018. LIANG Qi. SOC estimation of lithium battery based on Unscented Kalman filter[D]. Mianyang:Southwest University of Science and Technology, 2018.
[9] LEE K T, DAI M J, CHUANG C C, Temperature-compensated model for lithium-ion polymer batteries with extended Kalman filter state-ofcharge estimation for an implantable charger[J]. IEEE Transactions on Industrial Electronics, 2017(99):1.
[10] CHAOUI H, MEJDOUBI A E, OUKAOUR A, et al. State of charge estimation of LiFePO4 batteries with temperature variations using neural networks[J]. IEEE International Symposium on Industrial Electronics, 2016.
[11] MSH Lipu, HUSSAIN A, SAAD M H, et al. Improved recurrent NARX neural network model for state of charge estimation of lithiumion battery using pso algorithm[J]. IEEE Symposium on Computer Applications & Industrial Electronics, 2018:354-359.
[12] 赵钢, 朱芳欣, 窦汝振. 基于PSO-BP的电动汽车锂离子电池SOC估算[J]. 电源技术, 2018, 42(9):1318-1320. ZHAO Gang, ZHU Fangxin, DOU Ruzhen. SOC estimation of lithium battery for electric vehicle based on PSO-BP neural network[J]. Chinese Journal of Power Sources, 2018, 42(9):1318-1320.
[13] 陈德海, 任永昌, 黄艳国, 等. 基于改进PSO-RBF算法的纯电动汽车剩余里程实时预测[J]. 汽车工程, 2018, 40(7):764-769. CHEN Dehai, REN Yongchang, HUANG Yanguo, et al. Real time prediction for remaining mileage of battery electric vehicle based on modified PSO-RBF algorithm[J]. Automotive Engineering, 2018, 40(7):764-769.
[14] 薛萍, 宋岩亮. 改进蚁群算法与BP网络融合预测铅酸蓄电池SOC[J]. 哈尔滨理工大学学报, 2016, 21(6):95-99. XUE Ping, SONG Yanliang. The prediction of lead-acid battery remaining capacity based on improved ant colony algorithm and bp network[J]. Journal of Harbin University of Science and Technology, 2016, 21(6):95-99.
[15] 谢文强. 遗传算法优化BP网络的锂电池剩余容量预测[J]. 仪表技术, 2019(1):35-37. XIE Wenqiang. A GA-based optimal algorithm for the bp network for forecasting remaining capacity of the lithium battery[J]. Instrument Technology, 2019(1):35-37.
[16] 陈德海, 华铭, 徐王娟, 等. 基于二分法查找-伪循环次数法的动力电池健康状态实时预测[J]. 汽车技术, 2019(4):29-33. CHEN Dehai, HUA Ming, XU Wangjuan, et al. Real-time prediction of power battery SOH based on dichotomy searching pseudo-cyclic number method[J]. Automotive Technology, 2019(4):29-33.
[17] 高云龙, 闫鹏. 基于多种群粒子群算法和布谷鸟搜索的联合寻优算法[J]. 控制与决策, 2016, 31(4):601-608. GAO Yunlong, YAN Peng. Unified optimization based on multi-swarm PSO algorithm and cuckoo search algorithm[J]. Control and Decision, 2016, 31(4):601-608.
[18] 王东风, 孟丽.粒子群优化算法的性能分析和参数选择[J]. 自动化学报, 2016(10):1552-1561. WANG Dongfeng, MENG Li. Performance analysis and parameter selection of PSO algorithms[J]. Acta Automatica Sinica, 2016(10):1552-1561. |