储能科学与技术 ›› 2019, Vol. 8 ›› Issue (6): 1190-1196.doi: 10.12028/j.issn.2095-4239.2019.0129

• 研究开发 • 上一篇    下一篇

改进PSO-RBF模型的分阶查表法荷电状态估计

陈德海, 马原, 潘韦驰   

  1. 江西理工大学电气工程与自动化学院, 江西 赣州 341000
  • 收稿日期:2019-06-11 修回日期:2019-08-07 出版日期:2019-11-01 发布日期:2019-11-01
  • 通讯作者: 马原,硕士,研究方向为动力电池能量管理系统,E-mail:715663338@qq.com。
  • 作者简介:陈德海(1978-),男,博士研究生,副教授,研究方向为动力电池能量管理系统及故障诊断技术,E-mail:643967664@qq.com
  • 基金资助:
    国家自然科学基金(61463020),江西省自然科学基金(20151BAB206034)项目。

Improved state-of-the-art look-up table method for charge state estimation of PSO-RBF model

CHEN Dehai, MA Yuan, PAN Weichi   

  1. School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
  • Received:2019-06-11 Revised:2019-08-07 Online:2019-11-01 Published:2019-11-01

摘要: 为了解决纯电动汽车在SOC预测时易受电流波动、工况非线性等因素影响,提出了一种针对锂电池SOC进行动态预测的方法。首先,对粒子群聚类算法的参数组合进行优选并结合优选结果对径向基函数(RBF)神经网络进行改进。然后,通过分析电池在不同工作状态下的特性,将电池分为充电、静置、放电三个状态。针对电池所处的工作状态采取不同的策略对SOC进行预测。在电池放电阶段使用经过改进的PSO-RBF算法对SOC进行动态预测。在电池静置及充电状态使用二分查表法,将考虑温度漂移的开路电压曲线及充电时电流节点突变曲线制成二维数组表,利用制作的二维数组表对SOC的值进行修正。从而减小系统响应时间,同时预测提升精度。实验结果表明,该预测修正模型最大误差约为1.9%,验证了方法的有效性。

关键词: SOC, 粒子群算法, 径向基神经网络, 分阶段法

Abstract: In order to solve the problem that pure electric vehicles are susceptible to current fluctuations and non-linear conditions during SOC prediction, a method for dynamic prediction of lithium battery SOC is proposed. Firstly, the parameter combination of the particle swarm clustering algorithm is optimized and combined with the preferred results to improve the radial basis function (RBF) neural network. Then, by analyzing the characteristics of the battery under different working conditions, the battery is divided into charging and static. Set and discharge three states. Different strategies are used to predict the SOC for the working state of the battery. In the battery discharge phase, the improved PSO-RBF algorithm is used to dynamically predict the SOC. in the battery standing and charging state, the two-point look-up table method is used to make the open circuit voltage curve considering the temperature drift and the current node abrupt curve during charging into two dimensions. Array table, the value of SOC is corrected by using the created two-dimensional array table. Thereby reducing system response time while improving accuracy. The experimental results show that the maximum error of the prediction correction model is about 1.9%, which verifies the effectiveness of the method.

Key words: SOC, particle swarm optimization, radial basis neural network, staged method

中图分类号: