1 |
孙李平, 吴玉庭, 马重芳. 熔融盐热物性的测量方法[J]. 太阳能, 2007, 121(5): 36-38.
|
|
SUN L P, WU Y T, MA C F. Measuring methods of the thermophysical properties of molten salt[J]. Solar Energy, 2007, (5): 36-38.
|
2 |
沈向阳, 丁静, 彭强, 等. 高温熔盐在太阳能热发电中的应用[J]. 广东化工, 2007, 34(11): 49-52.
|
|
SHEN X Y, DING J, PENG Q, et al. Application of high temperature molten salt to solar thermal power[J]. Guangdong Chemical Industry, 2007, 34(11): 49-52.
|
3 |
GIL A, MEDRANO M, MARTORELL I, et al. State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization[J]. Renewable and Sustainable Energy Reviews, 2010, 14 (1): 31-55.
|
4 |
PENG Q, DING J, WEI X L, et al. The preparation and properties of multi-component molten salts[J]. Applied Energy, 2010, 87(9): 2812-2817.
|
5 |
FERNANDEZ A G, USHAK S, GALLEGUILLOS H, et al. Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants[J]. Applied Energy, 2014, 119: 131-140.
|
6 |
ZHAO C Y, JI Y N, XU Z G. Investigation of the Ca(NO3)2-NaNO3 mixture for latent heat storage[J]. Solar Energy Materials and Solar Cells, 2015, 140: 281-288.
|
7 |
VILLADA C, JARAMILLO F, CASTANO, J G, et al. Design and development of nitrate-nitrite based molten salts for concentrating solar power applications[J]. Solar Energy, 2019, 188: 291-299.
|
8 |
RODRIGUEZ-LAGUNA M D, GOMEZ-ROMERO P, TORRES C M S, et al. Development of low-melting point molten salts and detection of solid-to liquid transitions by alternative techniques to DSC[J]. Solar Energy Materials and Solar Cells, 2019, 202: doi: 10.1016/j.solmat.2019.110107.
|
9 |
李英, 吴玉庭, 鹿院卫, 等. 二元混合硝酸盐相图的预测及热物性实验研究[J]. 太阳能学报, 2018, 39(2): 435-440.
|
|
LI Y, WU Y T, LU Y W, et al. Phase diagram prediction and experimental study of thermophysical properties of binary mixed nitrate molten salts[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 435-440.
|
10 |
任楠. 混合熔盐传热蓄热介质的制备与热物性研究[D]. 北京: 北京工业大学, 2014.
|
|
REN N. Preparation and experimental study of thermal properties of mixed carbonates and molten salts with low melting point[D]. Beijing: Beijing University of Technology, 2014.
|
11 |
张璐迪. 纳米SiO2-熔盐复合储热材料的制备与热物性实验研究[D]. 北京: 北京工业大学, 2015.
|
|
ZHANG L D. Preparation and experimental study of thermophysical properties of nano SiO2-molten salt hybrid thermal energy storage materials[D]. Beijing: Beijing University of Technology, 2016.
|
12 |
李英. 低熔点二元混合熔盐传热蓄热介质的制备及热物性研究[D]. 北京: 北京工业大学, 2017.
|
|
LI Y. Study on preparation and thermophysical properties of the low melting point binary mixed molten salts for heat transfer and storage[D]. Beijing: Beijing University of Technology, 2017.
|
13 |
BRADSHAW R W, CORDARO J G, SIEGEL N P. Molten nitrate salt development for thermal energy storage in parabolic trough solar power systems[C]//ASME. ES2009: Proceedings of the ASME 3rd international conference on energy sustainability, New York, USA: Amer Soc Mechanical Engineers, 2009: 615-624.
|
14 |
SIEGEL N P, BRADSHAW R W, CORDARO J G, et al. Thermophysical property measurement of nitrate salt heat transfer fluids[C]//ASME. Proceedings of the ASME 5th international conference on energy sustainability, New York, USA: Amer Soc Mechanical Engineers, 2012: 439-446.
|
15 |
ZAVOICO A B. Solar power tower design basis document, revision[R]. Albuquerque, New Mexico and Livermore, California: Sandia National Laboratories, 2001.
|
16 |
金愿, 程进辉, 王坤, 等. 几种典型熔盐冷却剂的热物性研究[J]. 核技术, 2016, 39(5): 79-87.
|
|
JIN Yuan, CHENG Jinhui, WANG Kun, et al. Research on thermo-physical properties of several typical molten salt coolants[J]. Nuclear Techniques, 2016, 39(5): 79-87.
|
17 |
盛鹏, 赵广耀, 徐丽, 等. 新型低熔点硝酸盐熔盐的热力学性质[J]. 储能科学与技术, 2018, 7(4): 682-686.
|
|
SHENG Peng, ZHAO Guangyao, XU Li, et al. Thermal properties of a low-melting-point nitrate molten salt system[J]. Energy Storage Science and Technology, 2018, 7(4): 682-686.
|