储能科学与技术 ›› 2021, Vol. 10 ›› Issue (1): 242-249.doi: 10.19799/j.cnki.2095-4239.2020.0296

• 储能测试与评价 • 上一篇    下一篇

基于FFRLSAEKF的锂离子电池SOC在线估计研究

封居强1(), 伍龙1, 黄凯峰1(), 卢俊2, 张星1   

  1. 1.淮南师范学院机械与电气工程学院,安徽 淮南 232038
    2.淮南市矿用电子技术研究所,安徽 淮南 232008
  • 收稿日期:2020-08-27 修回日期:2020-10-19 出版日期:2021-01-05 发布日期:2021-01-08
  • 作者简介:封居强(1985—),男,讲师,研究方向为信号检测与估计,E-mail:fjq5060912@126.com|黄凯峰,副教授,主要从事安全工程研究,E-mail:215821591@qq.com
  • 基金资助:
    安徽高校自然科学研究项目(KJ2019A0692);安徽高校自然科学研究项目(KJ2019A0692)

Online SOC estimation of a lithium-ion battery based on FFRLS and AEKF

Juqiang FENG1(), Long WU1, Kaifeng HUANG1(), Jun LU2, Xing ZHANG1   

  1. 1.College of Mechanical and Electrical Ngineering, Huainan Normal University, Huainan 232038, Anhui, China
    2.Huainan Mining Electronic Technology Research Institute, Huainan 232008, Anhui, China
  • Received:2020-08-27 Revised:2020-10-19 Online:2021-01-05 Published:2021-01-08

摘要:

本文基于Thevenin等效电路模型,结合遗忘因子最小二乘法(FFRLS)和自适应扩展卡尔曼滤波算法(AEKF)提出联合估计荷电状态(SOC)算法。FFRLS对模型进行参数辨识,为SOC估计提供时变的模型参数;AEKF对SOC进行在线估计,为模型参数辨识提供准确的开路电压。以北京公交的纯电动客车用动力动态测试工况(BBDST)进行仿真实验,并与FFRLS在线辨识及安时积分法的SOC估计进行对比。该算法实现端电压的快速跟踪,精度较FFRLS提高了85%;SOC估计结果能够快速收敛,精度在1.5%~2%范围。研究结果表明,本文算法能够对模型系统进行闭环修正,从而具有更高的精度和更好的适应性。

关键词: 荷电状态估计, FFRLS, AEKF, BBDST

Abstract:

Based on the Thevenin equivalent circuit model, this paper proposes a joint estimation SOC algorithm combining the forgetting factor least squares (FFRLS) and adaptive extended Kalman filter (AEKF) methods. FFRLS identifies and provides the model parameters for the SOC estimation. AEKF estimates the SOC online and provides an accurate open circuit voltage for the model parameter identification. The Beijing bus dynamic stress test (BBDST) was used to simulate and compare with the FFRLS online identification and the SOC estimation based on ampere-hour integration. The algorithm realizes the fast tracking of terminal voltage, and the accuracy is improved by 85% compared with FFRLS. The SOC estimation results can be rapidly converged with an accuracy up to 1.5%~2%. The results show that the algorithm in this paper can modify the model system in a closed-loop manner, thus achieving higher accuracy and better adaptability.

Key words: SOC estimation, FFRLS, AEKF, BBDST

中图分类号: