储能科学与技术 ›› 2021, Vol. 10 ›› Issue (5): 1845-1853.doi: 10.19799/j.cnki.2095-4239.2021.0195

• 物理储能十年专刊·系统 • 上一篇    下一篇

基于经济模型预测控制的多虚拟电厂两阶段协调优化调度

孙乐平(), 韩帅, 吴宛潞, 郭小璇   

  1. 广西电网有限责任公司电力科学研究院,广西 南宁 530023
  • 收稿日期:2021-05-06 修回日期:2021-05-26 出版日期:2021-09-05 发布日期:2021-09-08
  • 通讯作者: 孙乐平 E-mail:sunleping1992@foxmail.com
  • 作者简介:孙乐平(1992—),男,工程师,研究方向为需求侧管理、综合能源应用,E-mail:sunleping1992@foxmail.com
  • 基金资助:
    广西电网有限责任公司电力科学研究院科技项目(ZBKJXM

Coordinated optimal scheduling of multiple virtual power plants in multiple time scales based on economic model predictive control

Leping SUN(), Shuai HAN, Wanlu WU, Xiaoxuan GUO   

  1. Electric Power Research Institute of Guangxi Power Grid Co. Ltd. , Nanning 530023, Guangxi, China
  • Received:2021-05-06 Revised:2021-05-26 Online:2021-09-05 Published:2021-09-08
  • Contact: Leping SUN E-mail:sunleping1992@foxmail.com

摘要:

在考虑新能源出力具有不确定性的条件下,如何实现多虚拟电厂经济优化运行是当前研究的热点。本文提出了基于经济模型预测控制的多虚拟电厂日前日内两阶段协调优化调度方法。首先,建立了包括风电机组和燃气轮机的分布式电源模型及储能电池模型,设计了参与需求响应的可中断负荷模型;接着,以最大化多虚拟电厂收益为目标,基于改进经济模型预测控制,日前调度通过引入纳什最优决策来实现多虚拟电厂最优经济调度,其中,预测域长度根据风电预测误差自适应选取,以降低风电预测不确定性对调度模型的影响;进一步,计及经济性,设计了弥补日前功率偏差的日内实时反馈调度策略。算例分析表明,相较单虚拟电厂仅与大电网交易,多虚拟电厂联合运行总利润提高26.75%;相较定步长,自适应域步长下交易电量误差降低了78.28%,所提出的调度方案有效应对了不确定性风电出力,提高调度精度的同时实现了多虚拟电厂整体最优经济运行,由此验证了模型的正确性和可行性。

关键词: 虚拟电厂, 经济模型预测控制, 非合作博弈, 自适应步长, 优化调度

Abstract:

Considering the uncertainty of new energy's output, economic and optimal operation of multiple virtual power plants have attracted considerable attention. Herein, a two-stage coordinated optimal scheduling method for multiple virtual power plants based on economic model predictive control is proposed. First, distributed power models, including wind turbines, gas turbines, and energy storage batteries models, are established, and an interruptible load model that participates in demand response is developed. Then, the day-ahead scheduling maximizes the revenue of multiple virtual power plants, employing Nash optimal decision-making to achieve optimal economic scheduling of multiple virtual power plants based on improved economic model predictive control. The length of the prediction domain is adaptively selected as per the wind power forecast error to reduce the impact of wind-power forecast uncertainty on the dispatch model. Furthermore, a real-time feedback scheduling strategy considering the economy is developed to make up for the power deviation of the day-ahead. Analysis of the case demonstrates that, compared with a single virtual power plant trading with only a large power grid, the total profit of the joint operation of multiple virtual power plants increases by 26.75%. Furthermore, compared with the fixed step size, the transaction power error is reduced by 78.28% under the adaptive domain step size. The proposed scheduling scheme effectively copes with the uncertainty of wind power and improves scheduling accuracy while realizing the overall optimal economic operation of multiple virtual power plants; thus, the correctness and feasibility of the scheduling model are confirmed.

Key words: virtual power plant, economic model predictive control, non-cooperative game, adaptive step size, optimal scheduling

中图分类号: