| 1 | LIU Z, YANG X Q, JIA W G, et al. Justification of CO2 as the working fluid for a compressed gas energy storage system: A thermodynamic and economic study[J]. Journal of Energy Storage, 2020, 27: doi: 10.1016/j.est.2019.101132. | 
																													
																						| 2 | ZHANG Y, YANG K, HONG H, et al. Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid[J]. Renewable Energy, 2016, 99: 682-697. | 
																													
																						| 3 | LIU S C, WU S C, HU Y K, et al. Comparative analysis of air and CO2 as working fluids for compressed and liquefied gas energy storage technologies[J]. Energy Conversion and Management, 2019, 181: 608-620. | 
																													
																						| 4 | 李玉平. 压缩二氧化碳储能系统的热力学性能分析[D]. 北京: 华北电力大学, 2018. | 
																													
																						|  | LI Y P. Thermal performance analysis of the compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2018. | 
																													
																						| 5 | CHEN Y, XU D J, CHEN Z, et al. Performance analysis and evaluation of a supercritical CO2 Rankine cycle coupled with an absorption refrigeration cycle[J]. Journal of Thermal Science, 2020, 29(4): 1036-1052. | 
																													
																						| 6 | 李翔宇, 冯永志, 冀文慧, 等. 5 MW超临界CO2向心透平设计及变工况性能分析[J]. 工程热物理学报, 2019, 40(10): 2259-2265. | 
																													
																						|  | LI X Y, FENG Y Z, JI W H, et al. Design and off-design performance analysis of 5 MW supercritical carbon dioxide centripetal turbine[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2259-2265. | 
																													
																						| 7 | AHN Y, BAE S J, KIM M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. | 
																													
																						| 8 | 刘立强, 陈纯正. 应用于透平机械的相似模化方法评述[J]. 低温工程, 1996(4): 43-47. | 
																													
																						|  | LIU L Q, CHEN C Z. An evaluation of the method of similarity modeling tests using on turbomachines[J]. Cryogenics, 1996(4): 43-47. | 
																													
																						| 9 | BALJE O E, JAPIKSE D. Turbomachines—A guide to design selection and theory[J]. Journal of Fluids Engineering, 1981, 103(4): 644. | 
																													
																						| 10 | KREIDER J F, KREITH F. Solar energy handbook[M]. New York: McGraw-Hill Book Co, 1981. | 
																													
																						| 11 | 郭有仪. 相似理论在低温透平膨胀机性能试验中的应用[J]. 制冷学报, 1988(2): 1-12. | 
																													
																						|  | GUO Y Y. Application of similarity theory in performance test of low temperature turbine expander[J]. Journal of Refrigeration, 1988(2): 1-12. | 
																													
																						| 12 | 凌志光. 涡轮模化试验数据的整理与模型级的推广[J]. 力学情报, 1976(2): 1-9. | 
																													
																						|  | LING Z G. Compilation and model-level generalization of turbine modeling test data[J]. Advances in Mechanics, 1976(2): 1-9. | 
																													
																						| 13 | YU H S, KIM D, GUNDERSEN T. A study of working fluids for organic Rankine cycles (ORCs) operating across and below ambient temperature to utilize liquefied natural gas (LNG) cold energy[J]. Energy, 2019, 167: 730-739. | 
																													
																						| 14 | 刘立强, 熊联友, 侯予, 等. 氦透平膨胀机相似模化试验方法的研究[J]. 低温与超导, 1996(4): 51-55. | 
																													
																						|  | LIU L Q, XIONG L Y, HOU Y, et al. Study on the similarity model test method of helium turbine expander[J]. Cryogenics & Superconductivity, 1996 (4): 51-55. | 
																													
																						| 15 | 胡朝斌. 大型空间环境模拟器氦系统低温透平的相似模化与试验研究[J]. 航天器环境工程, 1999(2): 45-51. | 
																													
																						|  | HU C B. Simulation and experimental study of cryogenic turbine of helium system in large space environment simulator[J]. Spacecraft Environment Engineering, 1999(2): 45-51. | 
																													
																						| 16 | 刘立强, 熊联友, 侯予, 等. 人工神经网络在透平膨胀机性能转换中的应用[J]. 低温与特气, 1998(3): 64-67. | 
																													
																						|  | LIU L Q, XIONG L Y, HOU Y, et al. Application of artificial neural network in turbine expander performance conversion[J]. Low Temperature and Specialty Gases, 1998(3): 64-67. | 
																													
																						| 17 | 侯予, 陈纯正, 熊联友, 等. 低温氦透平膨胀机的热力设计及性能分析[J]. 西安交通大学学报, 2003(7): 666-669. | 
																													
																						|  | HOU Y, CHEN C Z, XIONG L Y, et al. Design and analysis of thermal performance for cryogenic helium expansion turbine[J]. Journal of Xi'an Jiaotong University, 2003(7): 666-669. | 
																													
																						| 18 | WONG C S, KRUMDIECK S. Scaling of gas turbine from air to refrigerants for organic Rankine cycle using similarity concept[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(6): doi:10.1115/1.4031641. | 
																													
																						| 19 | WHITE M, SAYMA A I. Improving the economy-of-scale of small organic Rankine cycle systems through appropriate working fluid selection[J]. Applied Energy, 2016, 183: 1227-1239. | 
																													
																						| 20 | WHITE M, MARKIDES C N, SAYMA A I. Working-fluid replacement in supersonic organic Rankine cycle turbines[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2018, 140(9): doi:10.1115/1.4038754. | 
																													
																						| 21 | 刘玉娥. 氦气与空气平面叶栅相似性的初步研究[D]. 哈尔滨: 哈尔滨工程大学, 2008. | 
																													
																						|  | LIU Y E. The primary discussion of helium and air cascades' similitude[D]. Harbin: Harbin Engineering University, 2008. | 
																													
																						| 22 | SIMONYI P, ROELKE R, STABE R, et al. Aerodynamic evaluation of two compact radial-inflow turbine rotors[R]. NASA Report, 1995. | 
																													
																						| 23 | 张雪辉. 超临界压缩空气储能系统多级向心透平研究[D]. 北京: 中国科学院大学, 2014. | 
																													
																						|  | ZHANG X H. Multistage radial turbine for supercritical compressed air energy storage system[D]. Beijing: University of Chinese Academy of Sciences, 2014. | 
																													
																						| 24 | CHO J, CHOI M, BAIK Y J, et al. Development of the turbomachinery for the supercritical carbon dioxide power cycle[J]. International Journal of Energy Research, 2016, 40(5): 587-599. | 
																													
																						| 25 | 施东波, 刘天源, 谢永慧, 等. 基于Gauss过程回归的超临界二氧化碳透平设计-优化方法[J]. 动力工程学报, 2019, 39(11): 876-883, 892. | 
																													
																						|  | SHI D B, LIU T Y, XIE Y H, et al. Design and optimization of an S-CO2 turbine based on gauss process regression[J]. Journal of Chinese Society of Power Engineering, 2019, 39(11): 876-883, 892. | 
																													
																						| 26 | UUSITALO A, GRONMAN A. Analysis of radial inflow turbine losses operating with supercritical carbon dioxide[J]. Energies, 2021, 14(12): doi:10.3390/en14123561. | 
																													
																						| 27 | ZHANG D, WANG Y Q, XIE Y H. Investigation into off-design performance of a SCO2 turbine based on concentrated solar power[J]. Energies, 2018, 11(11): doi:10.3390/en11113014. |