储能科学与技术 ›› 2022, Vol. 11 ›› Issue (2): 442-466.doi: 10.19799/j.cnki.2095-4239.2021.0477
谢林翰1, 李万忠1, 张倩倩1(), 曹高萍2, 邱景义2, 明海2, 封伟3()
收稿日期:
2021-09-13
修回日期:
2021-09-29
出版日期:
2022-02-05
发布日期:
2022-02-08
通讯作者:
谢林翰,张倩倩,封伟
E-mail:zhangqianqian@bjut.edu.cn;weifeng@tju.edu.cn
作者简介:
谢林翰(1998—),男,硕士研究生,E-mail:xielinhan@?emails.bjut.edu.cn;
基金资助:
Linhan XIE1, Wanzhong LI1, Qianqian ZHANG1(), Gaoping CAO2, Jingyi QIU2, Hai MING2, Wei FENG3()
Received:
2021-09-13
Revised:
2021-09-29
Online:
2022-02-05
Published:
2022-02-08
Contact:
Linhan XIE,Qianqian ZHANG,Wei FENG
E-mail:zhangqianqian@bjut.edu.cn;weifeng@tju.edu.cn
摘要:
植物发供电技术是一种以植物作为发供电主体,利用电化学手段和植物自身的生理过程等,将自然界中的光能、机械能和生物质能等直接或间接转化为电能的绿色能源技术,具有节能环保、低成本和可持续的优点,对于基础科研和实际应用皆具有重要意义。本文通过对近年来该技术相关研究工作的分析探讨,综述了5类植物发供电技术的最新研究进展,包括牺牲电极植物原电池发供电技术、植物体离子浓度差发供电技术、类光合作用发供电技术、植物微生物燃料电池发供电技术和植物区域离子浓度扰动发供电技术。重点介绍了各类植物发供电技术的优势、原理、提高发供电能力的方法以及应用实例等,并将基于离子选择性纳米通道所设计的浓差电池的能量转换原理和应用展望到植物体内,有望推动植物发供电技术的进一步发展。最后,总结了植物发供电技术存在的问题及待解决的关键技术难点,并对植物发供电技术的应用前景进行了介绍。期望本文综述的植物发供电技术研究进展能够为新型清洁电力能源的获取提供新的思路,并能够推动植物发供电技术的实际应用进程。
中图分类号:
谢林翰, 李万忠, 张倩倩, 曹高萍, 邱景义, 明海, 封伟. 植物发供电技术的研究进展[J]. 储能科学与技术, 2022, 11(2): 442-466.
Linhan XIE, Wanzhong LI, Qianqian ZHANG, Gaoping CAO, Jingyi QIU, Hai MING, Wei FENG. Research advances in plant-power generation technology[J]. Energy Storage Science and Technology, 2022, 11(2): 442-466.
表1
离子选择性纳米通道浓差电池的发供电性能参数总结"
二维纳米流体通道 | 膜厚度/μm | 浓度梯度(倍数) | 最大功率密度/(W/m2) | 最大能量转换效率 | 参考文献 |
---|---|---|---|---|---|
超薄氮化碳膜 | 0.25 | 1000 | 0.21 | — | [ |
二氧化硅膜 | 140 | 1000 | 7.70 | 31.0% | [ |
异号电荷GO膜对 | 10 | 50 | 0.77 | 36.6% | [ |
阳离子插层改性GO膜 | — | 1000 | 38.00 | — | [ |
SPEEK膜 | 27 | 50 | 5.80 | — | [ |
SNF/AAO复合膜 | 65 | 50 | 2.86 | 27.3% | [ |
SPEEK/AAO复合膜 | 6.5 | 50 | 4.80 | — | [ |
Mxene/ANF复合膜 | 4.5 | 50 | 3.70 | 35.0% | [ |
蒙脱土膜 | 70 | 1000 | 0.15 | — | [ |
离子二极管膜 | — | 50 | 3.46 | 37.3% | [ |
1 | BALAT M. Status of fossil energy resources: a global perspective[J]. Energy Sources, Part B: Economics, Planning, and Policy, 2007, 2(1): 31-47. |
2 | ZOU C N, ZHAO Q, ZHANG G S, et al. Energy revolution: from a fossil energy era to a new energy era[J]. Natural Gas Industry B, 2016, 3(1): 1-11. |
3 | BARNES D F, FLOOR W M. Rural energy in developing countries: a challenge for economic development[J]. Annual Review of Energy and the Environment, 1996, 21(1): 497-530. |
4 | KAMPA M, CASTANAS E. Human health effects of air pollution[J]. Environmental Pollution, 2008, 151(2): 362-367. |
5 | NEWBERY D M. Acid rain[J]. Economic Policy, 1990, 5(11): 297-346. |
6 | AGGARWAL A, KUMARI R, MEHLA N, et al. Depletion of the ozone layer and its consequences: a review[J]. American Journal of Plant Sciences, 2013, 4(10): 1990. |
7 | TITUS J G. Greenhouse effect, sea level rise, and coastal zone management[J]. Coastal Management, 1986, 14(3): 147-171. |
8 | 周广胜. 气候变化对中国农业生产影响研究展望[J]. 气象与环境科学, 2015, 38(1): 80-94. |
ZHOU G S. Research prospect on impact of climate change on agricultural production in China[J]. Meteorological and Environmental Sciences, 2015, 38(1): 80-94. | |
9 | CAMPOS A, FERNANDES C. The geopolitics of energy[J]. Geopolitics of Energy and Energy Security, 2017, 24: 23-40. |
10 | ILHAM N I, HASANUZZAMAN M, MAMUN M A A. World energy policies[M]// Energy for Sustainable Development. Academic Press, 2020: 179-198. |
11 | PAZHERI F R, OTHMAN M F, MALIK N H. A review on global renewable electricity scenario[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 835-845. |
12 | KUMAR S, KATORIA D, SEHGAL D. Environment impact assessment of thermal power plant for sustainable development[J]. International Journal of Environmental Engineering and Management, 2013, 4(6): 567-572. |
13 | LAKATOS L, HEVESSY G, KOVÁCS J. Advantages and disadvantages of solar energy and wind-power utilization[J]. World Futures, 2011, 67(6): 395-408. |
14 | SCHERTL P, BRAUN H P. Respiratory electron transfer pathways in plant mitochondria[J]. Frontiers in Plant Science, 2014, 5: 163. |
15 | LEIBL W, MATHIS P. Electron transfer in photosynthesis[J]. Series on Photoconversion of Solar Energy, 2004, 2: 117. |
16 | MIYASAKA T, WATANABE T, FUJISHIMA A, et al. Highly efficient quantum conversion at chlorophyll a-lecithin mixed monolayer coated electrodes[J]. Nature, 1979, 277(5698): 638-640. |
17 | 秦淑琪, 宋玉民, 王文库, 等. 水果电池的研究[J]. 甘肃农业, 2006(5): 177-177. |
QING S Q, SONG Y M, WANG W K, et al. Research on fruit batteries[J]. Gansu Agriculture, 2006(5): 177-177. | |
18 | GOLBERG A, RABINOWITCH H D, RUBINSKY B. Zn/Cu-vegetative batteries, bioelectrical characterizations, and primary cost analyses[J]. Journal of Renewable and Sustainable Energy, 2010, 2(3): 033103. |
19 | MIR L M. Therapeutic perspectives of in vivo cell electropermeabilization[J]. BioElectrochEmistry, 2001, 53(1): 1-10. |
20 | WEAVER J C. Electroporation of cells and tissues[J]. IEEE Transactions on Plasma Science, 2000, 28(1): 24-33. |
21 | KUMARA K S J, WIJESUNDERA R P, JAYASURIYA K D. Plantain pith battery powered lighting system[C]// Proceedings of the Technical Sessions, 2015, 31: 29-37. |
22 | KHAN K A, HASSAN L, OBAYDULLAH A K M, et al. Bioelectricity: a new approach to provide the electrical power from vegetative and fruits at off-grid region[J]. Microsystem Technologies, 2020, 26(10): 3161-3172. |
23 | TALAI S M, SIAGI Z O, KIMUTAI S K, et al. Comparative energy generation of Irish-potato, tomato and pineapple ZN/CU vegetative batteries[J]. Research Journal of Applied Sciences, Engineering and Technology, 2014, 8(1): 9-19. |
24 | CHANDNA R, AZOOZ M M, AHMAD P. Recent advances of metabolomics to reveal plant response during salt stress[J]. Salt Stress in Plants, 2013: 1-14. |
25 | GAO J, FENG Y P, GUO W, et al. Nanofluidics in two-dimensional layered materials: inspirations from nature[J]. Chemical Society Reviews, 2017, 46(17): 5400-5424. |
26 | 王亚, 王海. 利用具有离子选择性的纳米通道实现浓度梯度差发电[J]. 首都师范大学学报(自然科学版), 2018, 39(6): 24-29. |
WANG Y, WANG H. Power generation from concentration gradient using ion-selective nanochannels[J]. Journal of Capital Normal University (Natural Science Edition), 2018, 39(6): 24-29. | |
27 | XIN W W, ZHANG Z, HUANG X D, et al. High-performance silk-based hybrid membranes employed for osmotic energy conversion[J]. Nature Communications, 2019, 10: 3876. |
28 | ZHANG Z, YANG S, ZHANG P P, et al. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators[J]. Nature Communications, 2019, 10: 2920. |
29 | BOCQUET L, CHARLAIX E. Nanofluidics, from bulk to interfaces[J]. Chemical Society Reviews, 2010, 39(3): 1073-1095. |
30 | KIM D K, DUAN C, CHEN Y F, et al. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels[J]. Microfluidics and Nanofluidics, 2010, 9(6): 1215-1224. |
31 | GHANBARI H, ESFANDIAR A. Ion transport through graphene oxide fibers as promising candidate for blue energy harvesting[J]. Carbon, 2020, 165: 267-274. |
32 | ZHAO Y, WANG J, KONG X Y, et al. Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion[J]. National Science Review, 2020, 7(8): 1349-1359. |
33 | WU C R, XIAO T L, TANG J D, et al. Biomimetic temperature-gated 2D cationic nanochannels for controllable osmotic power harvesting[J]. Nano Energy, 2020, 76: 105113. |
34 | XIAO K, GIUSTO P, WEN L P, et al. Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes[J]. Angewandte Chemie International Edition, 2018, 57(32): 10123-10126. |
35 | JI J Z, KANG Q, ZHOU Y, et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs[J]. Advanced Functional Materials, 2017, 27(2): 1603623. |
36 | HOU S H, ZHANG Q R, ZHANG Z, et al. Charged porous asymmetric membrane for enhancing salinity gradient energy conversion[J]. Nano Energy, 2021, 79: 105509. |
37 | GAO J, GUO W, FENG D, et al. High-performance ionic diode membrane for salinity gradient power generation[J]. Journal of the American Chemical Society, 2014, 136(35): 12265-12272. |
38 | GOVINDJEE G, WHITMARSH J. Introduction to photosynthesis: energy conversion by plants and bacteria[M]// Photosynthesis, 1982: 1-16. |
39 | DE CAPRARIIS B, DE FILIPPIS P, DI BATTISTA A, et al. Exoelectrogenic activity of a green microalgae, Chlorella vulgaris, in a bio-photovoltaic cells (BPVS)[J]. Chemical Engineering Transactions, 2014, 38: 523-528. |
40 | SAAR K L, BOMBELLI P, LEA-SMITH D J, et al. Enhancing power density of biophotovoltaics by decoupling storage and power delivery[J]. Nature Energy, 2018, 3(1): 75-81. |
41 | SAWA M, FANTUZZI A, BOMBELLI P, et al. Electricity generation from digitally printed cyanobacteria[J]. Nature Communications, 2017, 8(1): 1-10. |
42 | BOMBELLI P, MÜLLER T, HERLING T W, et al. A high power-density, mediator-free, microfluidic biophotovoltaic device for cyanobacterial cells[J]. Advanced Energy Materials, 2015, 5(2): 1401299. |
43 | BINDER A. Respiration and photosynthesis in energy-transducing membranes of cyanobacteria[J]. Journal of Bioenergetics and Biomembranes, 1982, 14(5): 271-286. |
44 | NG F L, PHANG S M, PERIASAMY V, et al. Algal biophotovoltaic (BPV) device for generation of bioelectricity using Synechococcus elongatus (Cyanophyta)[J]. Journal of Applied Phycology, 2018, 30(6): 2981-2988. |
45 | ZHU H W, MENG H K, ZHANG W, et al. Development of a longevous two-species biophotovoltaics with constrained electron flow[J]. Nature Communications, 2019, 10: 4282. |
46 | THONG C H, PHANG S M, NG F L, et al. Effect of different irradiance levels on bioelectricity generation from algal biophotovoltaic (BPV) devices[J]. Energy Science & Engineering, 2019, 7(5): 2086-2097. |
47 | SERVICE R F. Is it time to shoot for the sun?[J]. Science, 2005, 309(5734): 548-551. |
48 | GUL M M, AHMAD K S. Bioelectrochemical systems: Sustainable bio-energy powerhouses[J]. Biosensors and Bioelectronics, 2019, 142: 111576. |
49 | NEILSON A H, LEWIN R A. The uptake and utilization of organic carbon by algae: An essay in comparative biochemistry[J]. Phycologia, 1974, 13(3): 227-264. |
50 | KIM B H, CHANG I S, GADD G M. Challenges in microbial fuel cell development and operation[J]. Applied Microbiology and Biotechnology, 2007, 76(3): 485-494. |
51 | SMUCKER A J M. Carbon utilization and losses by plant root systems[J]. Roots, Nutrient and Water Influx, and Plant Growth, 1984, 49: 27-46. |
52 | 宋天顺, 晏再生, 胡颖, 等. 沉积物微生物燃料电池修复水体沉积物研究进展[J]. 现代化工, 2009, 29(11): 15-19. |
SONG T S, YAN Z S, HU Y, et al. Progress in aquatic sediment remediation by sediment microbial fuel cell[J]. Modern Chemical Industry, 2009, 29(11): 15-19. | |
53 | KAKU N, YONEZAWA N, KODAMA Y, et al. Plant/microbe cooperation for electricity generation in a rice paddy field[J]. Applied Microbiology and Biotechnology, 2008, 79(1): 43-49. |
54 | SCHAMPHELAIRE L D, BOSSCHE L V, DANG H S, et al. Microbial fuel cells generating electricity from rhizodeposits of rice plants[J]. Environmental Science & Technology, 2008, 42(8): 3053-3058. |
55 | STRIK D P, HAMELERS H V M, SNEL J F H, et al. Green electricity production with living plants and bacteria in a fuel cell[J]. International Journal of Energy Research, 2008, 32(9): 870-876. |
56 | 许鹏, 许丹, 张义, 等. 植物型微生物燃料电池研究进展[J]. 工业安全与环保, 2014(9): 33-35. |
XU P, XU D, ZHANG Y, et al. Research progress of plant type microbial fuel cell[J]. Industrial Safety and Environmental Protection, 2014(9): 33-35. | |
57 | CASTRESANA P A, MARTINEZ S M, FREEMAN E, et al. Electricity generation from moss with light-driven microbial fuel cells[J]. Electrochimica Acta, 2019, 298: 934-942. |
58 | IEROPOULOS I, WINFIELD J, GREENMAN J. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells[J]. Bioresource Technology, 2010, 101(10): 3520-3525. |
59 | SALINAS-JUÁREZ M G, ROQUERO P, DURÁN-DOMÍNGUEZ-DE-BAZÚA M D C. Plant and microorganisms support media for electricity generation in biological fuel cells with living hydrophytes[J]. Bioelectrochemistry, 2016, 112: 145-152. |
60 | TIMMERS R A, STRIK D P, HAMELERS H V M, et al. Long-term performance of a plant microbial fuel cell with Spartina anglica[J]. Applied Microbiology and Biotechnology, 2010, 86(3): 973-981. |
61 | LU Z H, YIN D, CHEN P, et al. Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells[J]. Applied Energy, 2020, 268: 115040. |
62 | POWELL R J, WHITE R, HILL R T. Merging metabolism and power: development of a novel photobioelectric device driven by photosynthesis and respiration[J]. Plos One, 2014, 9(1): e86518. |
63 | 张廷滔, 张礼霞, 高平, 等. 混合菌群生物燃料电池的产电机理与特性[J]. 应用与环境生物学报, 2012(3): 465-470. |
ZHANG T T, ZHANG L X, GAO P, et al. Mechanism and characteristics of electricity generation in microbial fuel cells catalyzed by mixed culture[J]. Chinese Journal of Applied and Environmental Biology, 2012(3): 465-470. | |
64 | LIU Y, DING M Z, LING W, et al. A three-species microbial consortium for power generation[J]. Energy & Environmental Science, 2017, 10(7): 1600-1609. |
65 | HELDER M, STRIK D, HAMELERS H V M, et al. Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax[J]. Bioresource Technology, 2010, 101(10): 3541-3547. |
66 | 付哲平, 李子健. 海泥细菌电池技术原理与特点及其应用前景分析研究——一种新型海洋可再生能源技术[J]. 海洋开发与管理, 2017, 34(3): 67-71. |
FU Z P, LI Z J. Principle and characteristic of technology and its application prospect of marine sediment microbial fuel cell[J]. Ocean Development and Management, 2017, 34(3): 67-71. | |
67 | LOGAN B E. Microbial fuel cells[M]. John Wiley & Sons, 2008. |
68 | PRAKASH O, MUNGRAY A, KAILASA S K, et al. Comparison of different electrode materials and modification for power enhancement in benthic microbial fuel cells (BMFCs)[J]. Process Safety and Environmental Protection, 2018, 117: 11-21. |
69 | FU Y B, XU Q, ZAI X R, et al. Low electrical potential anode modified with Fe/ferric oxide and its application in marine benthic microbial fuel cell with higher voltage and power output[J]. Applied Surface Science, 2014, 289: 472-477. |
70 | FU Y B, LIU Z H, SU G, et al. Modified carbon anode by MWCNTs/PANI used in marine sediment microbial fuel cell and its electrochemical performance[J]. Fuel Cells, 2016, 16(3): 377-383. |
71 | STRIK D P, TIMMERS R A, HELDER M, et al. Microbial solar cells: Applying photosynthetic and electrochemically active organisms[J]. Trends in Biotechnology, 2011, 29(1): 41-49. |
72 | MOHAN S V, MOHANAKRISHNA G, CHIRANJEEVI P. Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment[J]. Bioresource Technology, 2011, 102(14): 7036-7042. |
73 | 毛慧, 钱伟东. 水稻集中育供秧的现状与探索[J]. 农业与技术, 2018, 38(15): 167-168. |
MAO H, QIAN W D. Current situation and exploration of centralized breeding and supply of rice seedlings[J]. Agriculture and Technology, 2018, 38(15): 167-168. | |
74 | ORMEROD R M. Solid oxide fuel cells[J]. Chemical Society Reviews, 2003, 32(1): 17-28. |
75 | AELTERMAN P, RABAEY K, CLAUWAERT P, et al. Microbial fuel cells for wastewater treatment[J]. Water Science and Technology, 2006, 54(8): 9-15. |
76 | MAAMER B, BOUGHAMOURA A, FATH EL-BAB A M R, et al. A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes[J]. Energy Conversion and Management, 2019, 199: 111973. |
77 | ZI Y L, GUO H Y, WEN Z, et al. Harvesting low-frequency (<5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator[J]. ACS Nano, 2016, 10(4): 4797-4805. |
78 | KNIGHT M R, SMITH S M, TREWAVAS A J. Wind-induced plant motion immediately increases cytosolic calcium[J]. Proceedings of the National Academy of Sciences, 1992, 89(11): 4967-4971. |
79 | POHANKA M. The piezoelectric biosensors: Principles and applications[J]. International Journal of Electrochemical Science, 2017, 12: 496-506. |
80 | PAN S H, ZHANG Z N. Fundamental theories and basic principles of triboelectric effect: a review[J]. Friction, 2019, 7(1): 2-17. |
81 | CHEN Y D, JIE Y, WANG J, et al. Triboelectrification on natural rose petal for harvesting environmental mechanical energy[J]. Nano Energy, 2018, 50: 441-447. |
82 | WU H, CHEN Z F, XU G Q, et al. Fully biodegradable water droplet energy harvester based on leaves of living plants[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56060-56067. |
83 | JIE Y, JIA X T, ZOU J D, et al. Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy[J]. Advanced Energy Materials, 2018, 8(12): 1703133. |
84 | MEDER F, THIELEN M, MONDINI A, et al. Living plant-hybrid generators for multidirectional wind energy conversion[J]. Energy Technology, 2020, 8(7): 2000236. |
85 | YAN J, LIU M, JEONG Y G, et al. Performance enhancements in poly (vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting[J]. Nano Energy, 2019, 56: 662-692. |
86 | SLABOV V, KOPYL S, DOS SANTOS M P S, et al. Natural and eco-friendly materials for triboelectric energy harvesting[J]. Nano-Micro Letters, 2020, 12(1): 42. |
87 | 刘强, 许鑫华, 任光雷, 等. 酶生物燃料电池[J]. 化学进展, 2006, 18(11): 1530. |
LIU Q, XU X H, REN G L, et al. Enzymatic biofuel cells[J]. Progress in Chemistry, 2006, 18(11): 1530. |
[1] | 邵素霞, 朱振东, 彭文, 代娟, 吴浩. 充放电过程液相锂离子浓度变化及机理[J]. 储能科学与技术, 2021, 10(3): 1187-1195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||