储能科学与技术 ›› 2022, Vol. 11 ›› Issue (5): 1543-1550.doi: 10.19799/j.cnki.2095-4239.2021.0575

• 储能系统与工程 • 上一篇    下一篇

MgH2 反应器储氢反应速度特性

王为术(), 张向薪, 姚紫琨, 甄娟   

  1. 华北水利水电大学电力学院,河南 郑州 450045
  • 收稿日期:2021-11-01 修回日期:2021-11-27 出版日期:2022-05-05 发布日期:2022-05-07
  • 通讯作者: 王为术 E-mail:wangweishu@ncwu.edu.cn
  • 作者简介:王为术(1972—),男,博士,教授,主要从事镁基氢燃料电池能源系统热管理以及多相流动传热问题,E-mail: wangweishu@ncwu.edu.cn
  • 基金资助:
    河南省高校科技创新团队支持计划项目(16IRTSYHN017)

Study on reaction rate characteristics of hydrogen storage in MgH2 reactor

Weishu WANG(), Xiangxin ZHANG, Zikun YAO, Juan ZHEN   

  1. School of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450045, Henan, China
  • Received:2021-11-01 Revised:2021-11-27 Online:2022-05-05 Published:2022-05-07
  • Contact: Weishu WANG E-mail:wangweishu@ncwu.edu.cn

摘要:

为了探究镁基固态储氢反应器储氢反应速度的影响因素,建立了反应器三维数学模型。通过与文献中实验数据的对比验证了所建立模型的有效性。采用数值方法研究了导热油入口温度、供氢压力和环形导热油的油层厚度对储氢反应速度的影响。模拟结果表明,镁基固态储氢反应器存在最佳反应温度,过高或者过低的导热油入口温度都会降低储氢反应速度。导热油入口温度从548 K上升至573 K时,储氢速率从3.38 g/min提高到8.75 g/min;导热油入口温度从573 K上升至648 K,储氢速率从8.75 g/min下降到3.91 g/min。供氢压力越大,反应速度越快,但床层温度会随之升高。当压力从0.5 MPa上升到3 MPa时,储氢时间缩短约81.8%,温升65 K。在不改变储氢材料质量的情况下,反应床外壁添加环形导热油层可显著提高储氢反应速度。当环形导热油的油层厚度从0 mm增加到18 mm时,储氢时间从550 s下降到380 s,储氢时间缩短约30.9%。增加环形导热油层的厚度能显著缩短储氢时间,但会降低体积储氢密度。油层厚度从9 mm增加为18 mm时,储氢时间仅缩短5 s,而体积储氢密度从59.68 g/L降低到41.16 g/L。

关键词: 氢化镁, 反应速度, 油层厚度, 数值分析

Abstract:

A three-dimensional mathematical model of a magnesium-based solid-state hydrogen storage reactor was developed to explore factors influencing hydrogen storage reaction rates. The model was validated by comparison with experimental data in the literature. Numerical techniques were used to study how the hydrogen storage reaction rate was affected by inlet temperature, hydrogen supply pressure, and oil layer thickness of annular heat conduction oil. Simulation results show that the reactor has an optimal reaction temperature, and that the hydrogen storage reaction speed is reduced if the heat conduction oil inlet temperature is too high or too low. When the oil inlet temperature rises from 548 K to 573 K, the hydrogen storage rate increases from 3.38 g/min to 8.75 g/min. When the oil inlet temperature rises from 573 K to 648 K, the hydrogen storage rate decreases from 8.75 g/min to 3.91 g/min. The higher the hydrogen supply pressure, the faster the reaction rate, but at the expense of increasing bed temperature. A pressure rise from 0.5 MPa to 3 MPa leads to an 81.8% reduction in hydrogen storage time and a temperature rises of 65 K. For the condition of constant hydrogen storage mass, thickening the annular heat conduction oil layer on the outer wall of the reaction bed significantly improves hydrogen storage reaction speed. When that oil layer thickness is increased from 0 mm to 18 mm, hydrogen storage time decreases from 550 s to 380 s (about 30.9%). Increasing the thickness of the annular heat conduction oil layer can shorten the hydrogen storage time significantly but the volumetric hydrogen storage density is reduced. When the reservoir thickness increases from 9 mm to 18 mm, hydrogen storage time is shortened only 5 s, while the volumetric hydrogen storage density decreases from 59.68 g/L to 41.16 g/L.

Key words: magnesium hydride, reaction rate, reservoir thickness, numerical analysis

中图分类号: