1 |
贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 39(7): 198-207.
|
|
JIA H J, WANG D, XU X D, et al. Research on some key problems related to integrated energy systems[J]. Automation of Electric Power Systems, 2015, 39(7): 198-207.
|
2 |
韦古强, 胡从川, 刘乙学, 等. 基于液化空气储能的综合能源系统经济性分析[J]. 储能科学与技术, 2021, 10(6): 2403-2410.
|
|
WEI G Q, HU C C, LIU Y X, et al. Economic analysis of integrated energy system based on liquid air energy storage[J]. Energy Storage Science and Technology, 2021, 10(6): 2403-2410.
|
3 |
何伟, 陈波, 曾伟, 等. 面向绿色生态乡镇的综合能源系统关键问题及展望[J]. 中国电力, 2019, 52(6): 77-86, 93.
|
|
HE W, CHEN B, ZENG W, et al. Key problems and prospects of integrated energy system for green ecological townships[J]. Electric Power, 2019, 52(6): 77-86, 93.
|
4 |
王毅, 张宁, 康重庆. 能源互联网中能量枢纽的优化规划与运行研究综述及展望[J]. 中国电机工程学报, 2015, 35(22): 5669-5681.
|
|
WANG Y, ZHANG N, KANG C Q. Review and prospect of optimal planning and operation of energy hub in energy Internet[J]. Proceedings of the CSEE, 2015, 35(22): 5669-5681.
|
5 |
李昊, 张静, 刘畅, 等. 基于“端-边-云”架构的园区综合能源系统协调优化调度[J]. 储能科学与技术, 2022, 11(2): 623-634.
|
|
LI H, ZHANG J, LIU C, et al. Coordinated and optimized dispatching of park integrated energy system based on "End Edge Cloud" architecture[J]. Energy Storage Science and Technology, 2022, 11(2): 623-634.
|
6 |
刘涤尘, 马恒瑞, 王波, 等. 含冷热电联供及储能的区域综合能源系统运行优化[J]. 电力系统自动化, 2018, 42(4): 113-120, 141.
|
|
LIU D C, MA H R, WANG B, et al. Operation optimization of regional integrated energy system with CCHP and energy storage system[J]. Automation of Electric Power Systems, 2018, 42(4): 113-120, 141.
|
7 |
魏震波, 黄宇涵, 高红均, 等. 含电转气和热电解耦热电联产机组的区域能源互联网联合经济调度[J]. 电网技术, 2018, 42(11): 3512-3520.
|
|
WEI Z B, HUANG Y H, GAO H J, et al. Joint economic scheduling of power-to-gas and thermoelectric decoupling CHP in regional energy Internet[J]. Power System Technology, 2018, 42(11): 3512-3520.
|
8 |
CHENG S, WANG R, XU J Y, et al. Multi-time scale coordinated optimization of an energy hub in the integrated energy system with multi-type energy storage systems[J]. Sustainable Energy Technologies and Assessments, 2021, 47: doi:10.1016/j.seta.2021.101327.
|
9 |
檀勤良, 丁毅宏. 考虑碳交易的火电节能调度优化模型及应对模式[J]. 电力自动化设备, 2018, 38(7): 175-181, 188.
|
|
TAN Q L, DING Y H. Optimal energy-saving dispatching model for thermal power considering carbon trading and its coping mode[J]. Electric Power Automation Equipment, 2018, 38(7): 175-181, 188.
|
10 |
卫志农, 张思德, 孙国强, 等. 基于碳交易机制的电-气互联综合能源系统低碳经济运行[J]. 电力系统自动化, 2016, 40(15): 9-16.
|
|
WEI Z N, ZHANG S D, SUN G Q, et al. Carbon trading based low-carbon economic operation for integrated electricity and natural gas energy system[J]. Automation of Electric Power Systems, 2016, 40(15): 9-16.
|
11 |
钟永洁, 孙永辉, 王庭华, 等. 电热气互联能源系统动态环保经济协同灵活性调度[J]. 电网技术, 2020, 44(7): 2457-2469.
|
|
ZHONG Y J, SUN Y H, WANG T H, et al. Dynamic environmental economic and collaborative flexibility dispatch of integrated power, heat and natural gas energy system[J]. Power System Technology, 2020, 44(7): 2457-2469.
|
12 |
秦婷, 刘怀东, 王锦桥, 等. 基于碳交易的电-热-气综合能源系统低碳经济调度[J]. 电力系统自动化, 2018, 42(14): 8-13, 22.
|
|
QIN T, LIU H D, WANG J Q, et al. Carbon trading based low-carbon economic dispatch for integrated electricity-heat-gas energy system[J]. Automation of Electric Power Systems, 2018, 42(14): 8-13, 22.
|
13 |
崔杨, 曾鹏, 仲悟之, 等. 考虑阶梯式碳交易的电-气-热综合能源系统低碳经济调度[J]. 电力自动化设备, 2021, 41(3): 10-17.
|
|
CUI Y, ZENG P, ZHONG W Z, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system based on ladder-type carbon trading[J]. Electric Power Automation Equipment, 2021, 41(3): 10-17.
|
14 |
崔鹏程, 史俊祎, 文福拴, 等. 计及综合需求侧响应的能量枢纽优化配置[J]. 电力自动化设备, 2017, 37(6): 101-109.
|
|
CUI P C, SHI J Y, WEN F S, et al. Optimal energy hub configuration considering integrated demand response[J]. Electric Power Automation Equipment, 2017, 37(6): 101-109.
|
15 |
GU W, LU S, WU Z, et al. Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch[J]. Applied Energy, 2017, 205: 173-186.
|
16 |
张娟. 计及需求侧响应指标的微电网经济排放调度[J]. 东北电力大学学报, 2020, 40(6): 1-10.
|
|
ZHANG J. Economic emission dispatch of microgrid considering demand side response index[J]. Journal of Northeast Electric Power University, 2020, 40(6): 1-10.
|
17 |
程杉, 魏昭彬, 黄天力, 等. 基于多能互补的热电联供型微网优化运行[J]. 电力系统保护与控制, 2020, 48(11): 160-168.
|
|
CHENG S, WEI Z B, HUANG T L, et al. Multi-energy complementation based optimal operation of a microgrid with combined heat and power[J]. Power System Protection and Control, 2020, 48(11): 160-168.
|
18 |
薛云涛, 陈祎超, 李秀文, 等. 基于用户满意度和Ramsey定价理论的峰谷分时阶梯电价联合模型[J]. 电力系统保护与控制, 2018, 46(5): 122-128.
|
|
XUE Y T, CHEN Y C, LI X W, et al. Federation model of TOU and ladder price based on customer satisfaction and ramsey pricing[J]. Power System Protection and Control, 2018, 46(5): 122-128.
|
19 |
陈柏翰, 冯伟, 孙凯, 等. 冷热电联供系统多元储能及孤岛运行优化调度方法[J]. 电工技术学报, 2019, 34(15): 3231-3243.
|
|
CHEN P H, FENG W, SUN K, et al. Multi-energy storage system and islanded optimal dispatch method of CCHP [J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3231-3243.
|
20 |
张晓辉, 刘小琰, 钟嘉庆. 考虑奖惩阶梯型碳交易和电-热转移负荷不确定性的综合能源系统规划[J]. 中国电机工程学报, 2020, 40(19): 6132-6142.
|
|
ZHANG X H, LIU X Y, ZHONG J Q. Integrated energy system planning considering a reward and punishment ladder-type carbon trading and electric-thermal transfer load uncertainty[J]. Proceedings of the CSEE, 2020, 40(19): 6132-6142.
|
21 |
WANG J H, SHAHIDEHPOUR M, LI Z Y. Security-constrained unit commitment with volatile wind power generation[J]. IEEE Transactions on Power Systems, 2008, 23(3): 1319-1327.
|
22 |
田亮, 谢云磊, 周桂平, 等. 基于两阶段随机规划的热电机组深调峰辅助服务竞价策略[J]. 电网技术, 2019, 43(8): 2789-2798.
|
|
TIAN L, XIE Y L, ZHOU G P, et al. Deep peak regulation ancillary service bidding strategy for CHP units based on two-stage stochastic programming[J]. Power System Technology, 2019, 43(8): 2789-2798.
|
23 |
方绍凤, 周任军, 许福鹿, 等. 考虑电热多种负荷综合需求响应的园区微网综合能源系统优化运行[J]. 电力系统及其自动化学报, 2020, 32(1): 50-57.
|
|
FANG S F, ZHOU R J, XU F L, et al. Optimal operation of integrated energy system for park micro-grid considering comprehensive demand response of power and thermal loads[J]. Proceedings of the CSU-EPSA, 2020, 32(1): 50-57.
|