1 |
TAO Y B, HE Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259.
|
2 |
李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551-1562.
|
|
LI S K, LIN Y, PAN F. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562.
|
3 |
金光, 肖安汝, 刘梦云. 相变储能强化传热技术的研究进展[J]. 储能科学与技术, 2019, 8(6): 1107-1115.
|
|
JIN G, XIAO A R, LIU M Y. Research progress on heat transfer enhancement technology of phase change energy storage[J]. Energy Storage Science and Technology, 2019, 8(6): 1107-1115.
|
4 |
曲世琳, 彭莉, 吴晓琼, 等. 太阳能热利用中相变蓄热装置优化设计研究[J]. 太阳能学报, 2015, 36(7): 1705-1709.
|
|
QU S L, PENG L, WU X Q, et al. Design of phase change thermal storage device in the thermal utilization of solar energy[J]. Acta Energiae Solaris Sinica, 2015, 36(7): 1705-1709.
|
5 |
高一倩, 柳毅, 李凌. 基于LBM的三角腔固液相变模拟[J]. 储能科学与技术, 2020, 9(6): 1798-1805.
|
|
GAO Y Q, LIU Y, LI L. Numerical simulation of natural convection melting inside a triangular cavity using Lattice Boltzmann method[J]. Energy Storage Science and Technology, 2020, 9(6): 1798-1805.
|
6 |
LIN Y X, ALVA G, FANG G Y. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J]. Energy, 2018, 165: 685-708.
|
7 |
杜昭, 阳康, 舒高, 等. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537.
|
|
DU Z, YANG K, SHU G, et al. Experimental study on the heat storage and release of the solid-liquid phase change in metal-foam-filled tube[J]. Energy Storage Science and Technology, 2022, 11(2): 531-537.
|
8 |
夏莉, 张鹏, 周圆, 等. 石蜡与石蜡/膨胀石墨复合材料充/放热性能研究[J]. 太阳能学报, 2010, 31(5): 610-614.
|
|
XIA L, ZHANG P, ZHOU Y, et al. Study on the charging/discharging characteristics of paraffin and paraffin/expanded graphite composite material[J]. Acta Energiae Solaris Sinica, 2010, 31(5): 610-614.
|
9 |
ERMIS K, EREK A, DINCER I. Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network[J]. International Journal of Heat and Mass Transfer, 2007, 50(15/16): 3163-3175.
|
10 |
ETTOUNEY H, ALATIQI I, AL-SAHALI M, et al. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads[J]. Energy Conversion and Management, 2006, 47(2): 211-228.
|
11 |
程文龙, 韦文静. 高孔隙率泡沫金属相变材料储能、传热特性[J]. 太阳能学报, 2007, 28(7): 739-744.
|
|
CHENG W L, WEI W J. Theoretical analysis of phase change material storage with high porosity metal foams[J]. Acta Energiae Solaris Sinica, 2007, 28(7): 739-744.
|
12 |
FERNANDES D, PITIÉ F, CÁCERES G, et al. Thermal energy storage:"How previous findings determine current research priorities"[J]. Energy, 2012, 39(1): 246-257.
|
13 |
CALIANO M, BIANCO N, GRADITI G, et al. Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation[J]. Applied Energy, 2019, 256: doi: 10.1016/j.apenergy.2019.113921.
|
14 |
陈华, 赵睿, 柳秀丽. 泡沫铜对相变蓄热性能的影响[J]. 制冷技术, 2022, 42(1): 34-38, 58.
|
|
CHEN H, ZHAO R, LIU X L. Effect of copper foam on phase change heat storage performance[J]. Chinese Journal of Refrigeration Technology, 2022, 42(1): 34-38, 58.
|
15 |
王凡,杜昭,阳康,等.泡沫金属内嵌石蜡水平蓄器内凝固放热的实验研究[J].储能科学与技术, 2022: doi: 10.19799/j.cnki.2095-4239. 2022.0291.
|
|
WANG F, DU Z, YANG K, et al. Experimental study on solidification and heat release of foam metal embedded paraffin horizontal accumulator[J]. Energy Storage Science and Technology, 2022: doi: 10.19799/j.cnki.2095-4239.2022.0291.
|
16 |
YAO Y P, WU H Y, LIU Z Y. Direct simulation of interstitial heat transfer coefficient between paraffin and high porosity open-cell metal foam[J]. Journal of Heat Transfer, 2018, 140(3): doi: 10.1115/1.4038006.
|
17 |
LI W Q, WAN H, JING T T, et al. Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: A numerical and experimental study[J]. Applied Thermal Engineering, 2019, 146: 413-421.
|
18 |
SENTHIL R, PUNNIAKODI B M S, BALASUBRAMANIAN D, et al. Numerical investigation on melting and energy storage density enhancement of phase change material in a horizontal cylindrical container[J]. International Journal of Energy Research, 2022, 46(13): 19138-19158.
|
19 |
TABASSUM T, HASAN M, BEGUM L. Dynamic heat transfer study of a triangular-shaped latent heat storage unit for the attic space of a domestic dwelling[J]. Journal of Thermal Science and Engineering Applications, 2018, 10(6): doi: 10.1115/1.4040645.
|
20 |
EISAPOUR A H, EISAPOUR M, MOHAMMED H I, et al. Optimum design of a double elliptical latent heat energy storage system during the melting process[J]. Journal of Energy Storage, 2021, 44: doi: 10.1016/j.est.2021.103384.
|
21 |
CALMIDI V V, MAHAJAN R L. Forced convection in high porosity metal foams[J]. Journal of Heat Transfer, 2000, 122(3): 557-565.
|
22 |
KOUSHA N, HOSSEINI M J, ALIGOODARZ M R, et al. Effect of inclination angle on the performance of a shell and tube heat storage unit-An experimental study[J]. Applied Thermal Engineering, 2017, 112: 1497-1509.
|
23 |
LIU C, GROULX D. Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system[J]. International Journal of Thermal Sciences, 2014, 82: 100-110.
|
24 |
YE W B, ZHU D S, WANG N. Numerical simulation on phase-change thermal storage/release in a plate-fin unit[J]. Applied Thermal Engineering, 2011, 31(17/18): 3871-3884.
|
25 |
YUAN Y P, CAO X L, XIANG B, et al. Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage[J]. Solar Energy, 2016, 136: 365-378.
|
26 |
ZHANG P, MENG Z N, ZHU H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam[J]. Applied Energy, 2017, 185: 1971-1983.
|