储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1394-1412.doi: 10.19799/j.cnki.2095-4239.2024.0933

• 储能材料与器件 • 上一篇    下一篇

管壳式相变储能换热器翅片优化模拟分析

杨斌(), 于祥京, 郑洋, 杨世轩, 杨启容(), 乔大梁, 孙杨, 李友平()   

  1. 青岛大学机电工程学院,山东 青岛 266071
  • 收稿日期:2024-10-08 修回日期:2024-11-07 出版日期:2025-04-28 发布日期:2025-05-20
  • 通讯作者: 杨启容,李友平 E-mail:yangbinkuai@163.com;luyingyi125@163.com;youpingli@qdu.edu.cn
  • 作者简介:杨斌(1997—),男,硕士研究生,研究方向为相变储能换热器设计,E-mail:yangbinkuai@163.com
  • 基金资助:
    国家级大学生创新创业训练计划项目(202411065002);山东省自然科学基金(ZR2023QE215)

Numerical analysis of fin optimization for a shell-and-tube phase change energy storage heat exchanger

Bin YANG(), Xiangjing YU, Yang ZHENG, Shixuan YANG, Qirong YANG(), Daliang QIAO, Yang SUN, Youping LI()   

  1. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2024-10-08 Revised:2024-11-07 Online:2025-04-28 Published:2025-05-20
  • Contact: Qirong YANG, Youping LI E-mail:yangbinkuai@163.com;luyingyi125@163.com;youpingli@qdu.edu.cn

摘要:

国际能源危机促使提高能源利用效率和解决能源供需失衡问题成为研究热点。潜热储存(LHS)系统以其高能量密度以及能量释放与储存的灵活性成为解决该问题的重要应用,相变换热器则是提高LHS系统性能的重要环节。本工作为提高相变换热器换热效率,在直翅片基础上,通过改变翅片基本结构,设计出三角形、波纹形、方形三种翅片结构,提出偏心10 mm、15 mm、20 mm三种不同偏心程度的翅片,并将最优翅片结构与最优偏心程度相结合,通过Fluent对上述模型进行了储冷储热模拟分析,采用平均单位体积相变材料储能所需的储能时间来定量分析储能速率。模拟结果表明方形结构翅片在储冷与储热中都具有良好的换热效果,相比于原始直翅片储热速率提升了12.2%,储冷速率提升了9.2%;直翅片适当向下偏心能够有效提高储热速率,本工作中向下偏心15 mm为最优偏心程度,储热速率相比于原始直翅片提升了25%;翅片向下偏心会降低储冷效果;将两种最优结构即方形翅片与向下偏心15 mm翅片相结合,储热速率相比于原始直翅片提升了28.2%。

关键词: 潜热储能, 相变材料, 换热器, 翅片优化, 强化传热

Abstract:

The global energy crisis has driven substantial research efforts to enhance energy utilization efficiency and address supply-demand imbalances. Latent heat storage (LHS) systems, known for their high energy density and flexibility in energy storage and release, serve as a crucial solution to this challenge. Phase change heat exchangers play a vital role in improving the performance of LHS systems. This study aims to enhance the heat transfer efficiency of phase change heat exchangers by modifying conventional straight fins. Three fin structures (triangular, wavy, and square) were designed, along with three levels of eccentricity (10 mm, 15 mm, and 20 mm). The optimal fin structure was then combined with the most effective eccentricity. Using Fluent, a simulation analysis of thermal energy storage and cold storage models was conducted. The energy storage rate was quantitatively assessed based on the average energy storage time required for phase change materials per unit volume. The results indicate that square fins substantially enhance both heat and cold storages. Compared to the original straight fins, the heat storage rate is improved by 12.2%, while the cold storage rate increases by 9.2%. Additionally, introducing a downward eccentricity in straight fins improved the heat storage effect, with a 15 mm eccentricity yielding the best results (a 25% increase in heat storage rate compared to the original straight fins). However, downward eccentricity negatively impacted cold storage performance. By integrating the two optimal configurations (square fins and fins and a downward eccentricity of 15 mm) the heat storage rate was further enhanced by 28.2% compared to the original straight fins.

Key words: latent heat energy storage, phase change materials, heat exchanger, fin optimization, enhanced heat transfer

中图分类号: