1 |
CHU H Q, YANG C H, ZHANG Z K, et al. Advances in resource utilization of waste in phase change materials[J]. Journal of Energy Storage, 2024, 99: 113342. DOI: 10.1016/j.est.2024. 113342.
|
2 |
WANG C, QI J S, YANG J N, et al. A facile strategy for enhancement of heat storage rate in LHS units[J]. Journal of Energy Storage, 2024, 90: 111821. DOI: 10.1016/j.est.2024. 111821.
|
3 |
HEDAU A, SINGAL S K. Heat transfer and fluid flow analysis of PCM-based thermal energy storage concept for double pass solar air heater[J]. International Communications in Heat and Mass Transfer, 2024, 157: 107813. DOI: 10.1016/j.icheatmasstransfer. 2024.107813.
|
4 |
YIN H, NOROUZIASAS A, HAMDY M. PCM as an energy flexibility asset: How design and operation can be optimized for heating in residential buildings?[J]. Energy and Buildings, 2024, 322: 114721. DOI: 10.1016/j.enbuild.2024.114721.
|
5 |
RAKSHAMUTHU S, JEGAN S, JOEL BENYAMEEN J, et al. Experimental analysis of small size solar dryer with phase change materials for food preservation[J]. Journal of Energy Storage, 2021, 33: 102095. DOI: 10.1016/j.est.2020.102095.
|
6 |
HUA W S, ZHANG L Y, ZHANG X L. Research on passive cooling of electronic chips based on PCM: A review[J]. Journal of Molecular Liquids, 2021, 340: 117183. DOI: 10.1016/j.molliq. 2021.117183.
|
7 |
VERMA A, RAKSHIT D. Performance analysis of PCM-fin combination for heat abatement of Li-ion battery pack in electric vehicles at high ambient temperature[J]. Thermal Science and Engineering Progress, 2022, 32: 101314. DOI: 10.1016/j.tsep. 2022.101314.
|
8 |
LIANG Y, YANG H B, WANG H L, et al. Enhancing energy efficiency of air conditioning system through optimization of PCM-based cold energy storage tank: A data center case study[J]. Energy, 2024, 286: 129641. DOI: 10.1016/j.energy.2023.129641.
|
9 |
ZHAO Y, HUANG J X, SONG J, et al. Thermodynamic investigation of a Carnot battery based multi-energy system with cascaded latent thermal (heat and cold) energy stores[J]. Energy, 2024, 296: 131148. DOI: 10.1016/j.energy.2024.131148.
|
10 |
GUO H, TIAN M C. Enhancing the charging performance of the latent heat storage unit by gradient straight fins[J]. International Communications in Heat and Mass Transfer, 2024, 154: 107391. DOI: 10.1016/j.icheatmasstransfer.2024.107391.
|
11 |
NEMATPOURKESHTELI A, IASIELLO M, LANGELLA G, et al. Using metal foam and nanoparticle additives with different fin shapes for PCM-based thermal storage in flat plate solar collectors[J]. Thermal Science and Engineering Progress, 2024, 52: 102690. DOI: 10.1016/j.tsep.2024.102690.
|
12 |
WAQAS H, HASAN M J, JI C H, et al. Melting performance of PCM with MoS2 and Fe3O4 nanoparticles using leaf-based fins with different orientations in a shell and tube-based TES system[J]. International Communications in Heat and Mass Transfer, 2024, 158: 107944. DOI: 10.1016/j.icheatmasstransfer.2024. 107944.
|
13 |
LIN X W, ZHANG X L, LIU L, et al. Polymer/expanded graphite-based flexible phase change material with high thermal conductivity for battery thermal management[J]. Journal of Cleaner Production, 2022, 331: 130014. DOI: 10.1016/j.jclepro. 2021.130014.
|
14 |
陈久林. 管壳式相变蓄热器热性能分析及结构优化[J]. 热能动力工程, 2022, 37(7): 93-101. DOI: 10.16146/j.cnki.rndlgc.2022.07.013.
|
|
CHEN J L. Thermal performance analysis and structural optimization of shell-and-tube phase change accumulator[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(7): 93-101. DOI: 10.16146/j.cnki.rndlgc.2022.07.013.
|
15 |
HUANG Y P, CAO D C, SUN D K, et al. Experimental and numerical studies on the heat transfer improvement of a latent heat storage unit using gradient tree-shaped fins[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121920. DOI: 10. 1016/j.ijheatmasstransfer.2021.121920.
|
16 |
LIU J W, HU P F, LIU Z P, et al. Enhancement effect of T-shaped fins on phase change material melting in a horizontal shell-and-tube storage unit[J]. International Journal of Heat and Mass Transfer, 2023, 208: 124044. DOI: 10.1016/j.ijheatmasstransfer. 2023.124044.
|
17 |
TAVAKOLI A, FARZANEH-GORD M, EBRAHIMI-MOGHADAM A. Using internal sinusoidal fins and phase change material for performance enhancement of thermal energy storage systems: Heat transfer and entropy generation analyses[J]. Renewable Energy, 2023, 205: 222-237. DOI: 10.1016/j.renene.2023.01.074.
|
18 |
ALY K A, EL-LATHY A R, FOUAD M A. Enhancement of solidification rate of latent heat thermal energy storage using corrugated fins[J]. Journal of Energy Storage, 2019, 24: 100785. DOI: 10.1016/j.est.2019.100785.
|
19 |
PARSA N, KAMKARI B, ABOLGHASEMI H. Experimental study on the influence of shell geometry and tube eccentricity on phase change material melting in shell and tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2024, 227: 125571. DOI: 10.1016/j.ijheatmasstransfer.2024.125571.
|
20 |
AO C, YAN S Y, HU W Q, et al. Heat transfer analysis of a PCM in shell-and-tube thermal energy storage unit with different V-shaped fin structures[J]. Applied Thermal Engineering, 2022, 216: 119079. DOI: 10.1016/j.applthermaleng.2022.119079.
|
21 |
YAN P L, FAN W J, YANG Y, et al. Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations[J]. Applied Energy, 2022, 327: 120064. DOI: 10.1016/j.apenergy.2022.120064.
|
22 |
SONG L P, WU S C, YU C, et al. Thermal performance analysis and enhancement of the multi-tube latent heat storage (MTLHS) unit[J]. Journal of Energy Storage, 2022, 46: 103812. DOI: 10.1016/j.est.2021.103812.
|
23 |
YAZICI M Y, AVCI M, AYDIN O, et al. On the effect of eccentricity of a horizontal tube-in-shell storage unit on solidification of a PCM[J]. Applied Thermal Engineering, 2014, 64(1/2): 1-9. DOI: 10. 1016/j.applthermaleng.2013.12.005.
|
24 |
ZHANG L D, ZHOU G B. Optimal eccentricity and exergy analyses of a horizontal double-tube latent heat storage unit for melting processes[J]. Journal of Energy Storage, 2024, 88: 111647. DOI: 10.1016/j.est.2024.111647.
|
25 |
LIU Y K, TAO Y B. Experimental and numerical investigation of longitudinal and annular finned latent heat thermal energy storage unit[J]. Solar Energy, 2022, 243: 410-420. DOI: 10.1016/j.solener.2022.08.023.
|
26 |
HOSSEINI M J, RANJBAR A A, SEDIGHI K, et al. A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger[J]. International Communications in Heat and Mass Transfer, 2012, 39(9): 1416-1424. DOI: 10. 1016/j.icheatmasstransfer.2012.07.028.
|
27 |
谭振炜, 李沐, 李传常. 相变储冷凝胶在管翅式储冷器中传热特性的研究[J]. 储能科学与技术, 2023, 12(12): 3740-3748. DOI: 10. 19799/j.cnki.2095-4239.2023.0682.
|
|
TAN Z W, LI M, LI C C. Research on the heat transfer characteristics of phase change cold storage gels in tube and fin cold storage equipment[J]. Energy Storage Science and Technology, 2023, 12(12): 3740-3748. DOI: 10.19799/j.cnki.2095-4239.2023. 0682.
|
28 |
WANG Z, WANG Y L, YANG L S, et al. Study on solidification characteristics of bionic finned phase change heat exchanger and multi-objective optimization design[J]. Journal of Energy Storage, 2024, 86: 111105. DOI: 10.1016/j.est.2024.111105.
|
29 |
HUANG Y P, LIU X D. Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins[J]. Renewable Energy, 2021, 174: 199-217. DOI: 10.1016/j.renene. 2021.04.066.
|
30 |
ZHENG J Y, WANG J, CHEN T T, et al. Solidification performance of heat exchanger with tree-shaped fins[J]. Renewable Energy, 2020, 150: 1098-1107. DOI: 10.1016/j.renene.2019.10.091.
|