1 |
张忠会, 雷大勇, 李俊, 等. 基于自适应ε-支配多目标粒子群算法的含SOP的主动配电网源-网-荷-储双层协同规划模型[J]. 电网技术, 2022, 46(6): 2199-2212. DOI: 10.13335/j.1000-3673.pst.2021. 1098.
|
|
ZHANG Z H, LEI D Y, LI J, et al. Source-network-load-storage bi-level collaborative planning model of active distribution network with SOP based on adaptive ε-dominating multi-objective particle swarm optimization algorithm[J]. Power System Technology, 2022, 46(6): 2199-2212. DOI: 10.13335/j.1000-3673.pst. 2021. 1098.
|
2 |
赵壮, 张宏立, 王聪. 区域能源互联网的"源-网-荷-储" 运行优化研究[J]. 可再生能源, 2022, 40(2): 238-246. DOI: 10.13941/j.cnki.21-1469/tk.2022.02.012.
|
|
ZHAO Z, ZHANG H L, WANG C. Research on optimization of "source-net-charge-storage" operation of regional energy Internet[J]. Renewable Energy Resources, 2022, 40(2): 238-246. DOI: 10.13941/j.cnki.21-1469/tk.2022.02.012.
|
3 |
黄慧, 李永刚, 刘华志. 基于改进Nash-Q均衡迁移算法的源网荷储协同优化策略[J]. 电力自动化设备, 2023, 43(8): 71-77, 104. DOI: 10.16081/j.epae.202303039.
|
|
HUANG H, LI Y G, LIU H Z. Collaborative optimization strategy of source-grid-load-energy storage based on improved Nash-Q equilibrium transfer algorithm[J]. Electric Power Automation Equipment, 2023, 43(8): 71-77, 104. DOI: 10.16081/j.epae.2023 03039.
|
4 |
罗金满, 刘丽媛, 刘飘, 等. 考虑源网荷储协调的主动配电网优化调度方法研究[J]. 电力系统保护与控制, 2022, 50(1): 167-173. DOI: 10.19783/j.cnki.pspc.210348.
|
|
LUO J M, LIU L Y, LIU P, et al. An optimal scheduling method for active distribution network considering source network load storage coordination[J]. Power System Protection and Control, 2022, 50(1): 167-173. DOI: 10.19783/j.cnki.pspc.210348.
|
5 |
刘金森, 罗宁, 王杰, 等. 基于海量场景降维的配电网源网荷储协同规划[J]. 中国电力, 2022, 55(12): 78-85. DOI: 10.11930/j.issn.1004-9649.202208020.
|
|
LIU J S, LUO N, WANG J, et al. Massive scenario reduction based distribution-level power system planning considering the coordination of source, network, load and storage[J]. Electric Power, 2022, 55(12): 78-85. DOI: 10.11930/j.issn.1004-9649. 202208020.
|
6 |
LIANG C H, LIU R J, ZUO X Y, et al. Two-level optimal scheduling of source-storage-load interactive distribution network based on particle swarm optimization algorithm[J]. AIP Advances, 2024, 14(4): 045117. DOI: 10.1063/5.0196912.
|
7 |
李浩君, 方璇, 戴海容. 基于自注意力机制和双向GRU神经网络的深度知识追踪优化模型[J]. 计算机应用研究, 2022, 39(3): 732-738. DOI: 10.19734/j.issn.1001-3695.2021.08.0345.
|
|
LI H J, FANG X, DAI H R. Deep knowledge tracking optimization model based on self-attention mechanism and bidirectional GRU neural network[J]. Application Research of Computers, 2022, 39(3): 732-738. DOI: 10.19734/j.issn.1001-3695.2021.08.0345.
|
8 |
周欣, 曹俊兴, 王兴建, 等. 基于双向门控循环单元神经网络的声波测井曲线重构技术[J]. 地球物理学进展, 2022, 37(1): 357-366.
|
|
ZHOU X, CAO J X, WANG X J, et al. Acoustic log reconstruction based on bidirectional Gated Recurrent Unit(GRU)neural network[J]. Progress in Geophysics, 2022, 37(1): 357-366.
|
9 |
赵荣珍, 赵楠. 结合扰动集成RBF的故障识别方法[J]. 兰州理工大学学报, 2022, 48(6): 40-45. DOI: 10.3969/j.issn.1673-5196.2022. 06.006.
|
|
ZHAO R Z, ZHAO N. Fault identification method combined with disturbance ensemble RBF[J]. Journal of Lanzhou University of Technology, 2022, 48(6): 40-45. DOI: 10.3969/j.issn.1673-5196. 2022.06.006.
|
10 |
田晟, 宋霖. 基于CNN和Bagging集成的交通标志识别[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 35-46. DOI: 10.16088/j.issn. 1001-6600.2021102203.
|
|
TIAN S, SONG L. Traffic sign recognition based on CNN and bagging integration[J]. Journal of Guangxi Normal University (Natural Science Edition), 2022, 40(4): 35-46. DOI: 10.16088/j.issn.1001-6600.2021102203.
|
11 |
郑云飞, 熊志, 王博, 等. 考虑最优消纳区间的区域能源聚合商博弈策略[J]. 现代电力, 2022, 39(1): 64-71. DOI: 10.19725/j.cnki.1007-2322.2021.0062.
|
|
ZHENG Y F, XIONG Z, WANG B, et al. Game strategy of regional energy aggregators considering optimal accommodation interval[J]. Modern Electric Power, 2022, 39(1): 64-71. DOI: 10.19725/j.cnki.1007-2322.2021.0062.
|
12 |
赵静波, 黄强, 赵香, 等. 基于模糊化动态评估的新能源消纳制约因素分析[J]. 高电压技术, 2022, 48(4): 1286-1295. DOI: 10.13336/j.1003-6520.hve.20210930.
|
|
ZHAO J B, HUANG Q, ZHAO X, et al. Analysis of restrictive factors of new energy consumption based on fuzzy dynamic evaluation[J]. High Voltage Engineering, 2022, 48(4): 1286-1295. DOI: 10.13336/j.1003-6520.hve.20210930.
|
13 |
智筠贻, 凌浩恕, 吴昊, 等. 风光储多能互补能源系统容量配置优化[J]. 储能科学与技术, 2024, 13(11): 3874-3888. DOI: 10.19799/j.cnki.2095-4239.2024.0377.
|
|
ZHI J Y, LING H S, WU H, et al. Optimization of capacity configuration for multi-energy complementary systems using wind, solar, and energy storage[J]. Energy Storage Science and Technology, 2024, 13(11): 3874-3888. DOI: 10.19799/j.cnki.2095-4239.2024.0377.
|
14 |
罗世刚, 张伟, 李威武, 等. 考虑电/热储能灵活经济调控的综合能源系统与产消者日前协调优化运行策略[J]. 储能科学与技术, 2023, 12(2): 486-495. DOI: 10.19799/j.cnki.2095-4239.2022.0538.
|
|
LUO S G, ZHANG W, LI W W, et al. A day-ahead optimized operation of integrated energy system and prosumers with flexible economic regulation of electric/thermal storage[J]. Energy Storage Science and Technology, 2023, 12(2): 486-495. DOI: 10. 19799/j.cnki.2095-4239.2022.0538.
|
15 |
刘宇龄, 孟锦豪, 彭乔, 等. 基于NSGA-II遗传算法的锂电池均衡指标优化[J]. 储能科学与技术, 2023, 12(6): 1946-1956. DOI: 10. 19799/j.cnki.2095-4239.2023.0088.
|
|
LIU Y L, MENG J H, PENG Q, et al. NSGA-Ⅱ genetic algorithm-based optimization of the lithium battery equalization index[J]. Energy Storage Science and Technology, 2023, 12(6): 1946-1956. DOI: 10.19799/j.cnki.2095-4239.2023.0088.
|