储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 2057-2066.doi: 10.19799/j.cnki.2095-4239.2024.1127

• 储能系统与工程 • 上一篇    下一篇

基于集成神经网络的源-网-荷-储多能网络耦合优化调控研究

赵爽1(), 赵鹏远1, 丁万钦1(), 刘斌1, 王文东1, 翟群芳2, 李小龙2   

  1. 1.长电新能有限责任公司
    2.长峡数字能源科技(湖北)有限公司,湖北 武汉 430000
  • 收稿日期:2024-11-27 修回日期:2024-12-28 出版日期:2025-05-28 发布日期:2025-05-21
  • 通讯作者: 丁万钦 E-mail:zhao_shuang@ctg.com.cn;dwq280528@163.com
  • 作者简介:赵爽(1988—),男,硕士,高级工程师,研究方向为水利水电工程。E-mail:zhao_shuang@ctg.com.cn
  • 基金资助:
    三峡金沙江川云水电开发有限公司永善溪洛渡电厂资助(Z412302062)

Research on coupled optimization and regulation of source network load storage multi energy networks based on integrated neural networks

Shuang ZHAO1(), Pengyuan ZHAO1, Wanqin DING1(), Bin LIU1, Wendong WANG1, Qunfang ZHAI2, Xiaolong LI2   

  1. 1.China Yangtze Power Renewables Co. , Ltd.
    2.Yangtze Three Gorges Digital Energy Technology (Hubei) Co. , Ltd. , Wuhan 430000, Hubei, China
  • Received:2024-11-27 Revised:2024-12-28 Online:2025-05-28 Published:2025-05-21
  • Contact: Wanqin DING E-mail:zhao_shuang@ctg.com.cn;dwq280528@163.com

摘要:

在多能系统中,由于环节复杂且受到系统动态性和不确定性的深刻影响,各环节间常存在冲突与权衡,使得能源供需的动态平衡变得难以实现。为了应对这一挑战,提出基于集成神经网络的源-网-荷-储多能网络耦合优化调控方法。考虑多能系统中源-网-荷-储多环节的碳排放,全面、准确地实现碳排放评估。结合双向加权GRU神经网络与Bagging集成算法,构建集成神经网络模型,捕捉时间序列数据的前后文信息,通过组合多个弱学习器显著降低预测误差,实现对多能网络碳排放的精确预测。在调控过程中,将碳排放成本效益、发电成本最小化以及新能源消纳电量最大化作为核心优化目标,并应用NSGA-II算法进行求解,实现对复杂多能系统的全面优化调控。实验结果表明,所提方法具有较高的碳排放预测精度,且调控测试显示,通过应用该方法,能源利用率和能源消纳量均得到了显著提升,机组出力稳定性也得到了明显增强。这一研究成果对于推动多能系统的可持续发展和高效运行具有重要意义。

关键词: 集成神经网络, 多能系统, 源-网-荷-储, 优化调控

Abstract:

In multi-energy systems, the complexity of interconnections and the profound impact of system dynamics and uncertainties often lead to conflicts and trade-offs between components. These challenges make it difficult to maintain a dynamic balance between energy supply and demand. To address this challenge, a coupled optimization and control method for source network load storage multi-energy networks based on integrated neural networks is proposed. In addition, the proposed method considers the carbon emissions of multiple links in multi-energy systems, including source, grid, load, and storage, enabling comprehensive and accurate emission assessment. By combining a bidirectional weighted gated recurrent unit neural network with the Bagging ensemble algorithm, an ensemble neural network model can be constructed to capture contextual information about the time series data. By combining multiple weak learners, the proposed model significantly reduced the prediction error, achieving accurate carbon emission predictions in multi-energy networks. The regulation process focuses on three core optimization objectives: minimizing carbon emissions, and power generation costs, and maximizing the consumption of new energy. To address these challenges in complex multi-energy systems, the NSGA-II algorithm was applied to achieve comprehensive optimization regulation. The experimental results demonstrate that the proposed method accurately predicts carbon emissions. Furthermore, a regulation test demonstrated that the proposed method significantly improved the energy utilization efficiency, optimized the energy consumption, and enhanced the unit output stability. This research achievement is of great significance for sustainable development and efficient operation of multi-energy systems.

Key words: integrated neural network, multi energy system, source network load storage, optimizing regulation

中图分类号: