储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 3149-3159.doi: 10.19799/j.cnki.2095-4239.2025.0408

• 储能系统与工程 • 上一篇    

基于量子增强混合时空图神经网络的混合储能系统自适应频率调节方法

徐鹤勇1(), 郑铁军1, 丁圣权2,3, 蒙飞1, 张越2,3(), 杨家麒1   

  1. 1.国网宁夏电力有限公司调度控制中心,宁夏 银川 750001
    2.南瑞集团有限公司(国网电力科学研究院有限公司),江苏 南京 211106
    3.北京科东电力控制系统有限责任公司,北京 100192
  • 收稿日期:2025-04-25 修回日期:2025-05-12 出版日期:2025-08-28 发布日期:2025-08-18
  • 通讯作者: 张越 E-mail:xhyong_2001@126.com;zhangyue3655@163.com
  • 作者简介:徐鹤勇(1983—),男,硕士,高级工程师,研究方向为电网调度运行及调度自动化,E-mail:xhyong_2001@126.com
  • 基金资助:
    宁夏自然科学基金项目(2023AAC03830)

An adaptive frequency regulation method for hybrid energy storage systems based on quantum-enhanced hybrid spatiotemporal graph neural networks

Heyong XU1(), Tiejun ZHENG1, Shengquan DING2,3, Fei MENG1, Yue ZHANG2,3(), Jiaqi YANG1   

  1. 1.State Grid Ningxia Electric Power Co. , Ltd. , Power Dispatch and Control Center, Yinchuan 750001, Ningxia, China
    2.NARI Group Corporation Co. , Ltd. , (State Grid Electric Power Research Institute Co. , Ltd. , ), Nanjing 211106, Jiangsu, China
    3.Beijing Kedong Electric Power Control System Co. , Ltd. , Beijing 100192, China
  • Received:2025-04-25 Revised:2025-05-12 Online:2025-08-28 Published:2025-08-18
  • Contact: Yue ZHANG E-mail:xhyong_2001@126.com;zhangyue3655@163.com

摘要:

随着可再生能源的大规模并网,电力系统频率调节面临前所未有的挑战。本研究提出了一种基于量子增强深度强化学习和时空图神经网络(quantum-enhanced deep reinforcement learning and spatio-temporal graph neural networks,QE-DRL-ST-GNN)的混合储能系统自适应频率调节方法,旨在提高多时间尺度下的电网频率调节性能。该方法创新性地将量子计算与深度强化学习和图神经网络相结合,克服了传统方法在处理高维状态空间和复杂时空依赖性方面的局限性。QE-DRL-ST-GNN采用量子状态编码来表示系统状态,利用量子图的卷积提取时空特征,并通过量子变分算法优化强化学习策略。此外,本研究还设计了一种自适应量子电路生成机制,可以根据系统的动态特性自动调整量子电路结构。案例分析结果表明,与传统的量子增强深度强化学习(quantum-enhanced deep reinforcement learning,QE-DRL)方法相比,QE-DRL-ST-GNN方法在极端情况下频率偏差控制在0.05 Hz,而传统DRL方法为0.15 Hz,提高了66.67%;在调节时间方面,QE-DRL-ST-GNN方法在复杂场景中仅需1.67 s,比传统DRL方法缩短47%;与传统DRL方法的83%相比,QE-DRL-ST-GNN方法在极端情况下提高了13%。

关键词: 混合储能调频, 量子增强学习, 自适应控制, 多时间尺度协调, 图神经网络, 混合量子经典控制

Abstract:

With the large-scale integration of renewable energy into power grids, system frequency regulation faces unprecedented challenges. This study proposes an adaptive frequency regulation method for hybrid energy storage systems based on quantum-enhanced deep reinforcement learning and spatiotemporal graph neural networks (QE-DRL-ST-GNN), aiming to improve grid frequency regulation performance across multiple timescales. By integrating quantum computing with deep reinforcement learning and graph neural networks, the method overcomes limitations of traditional approaches in handling high-dimensional state spaces and complex spatiotemporal dependencies. QE-DRL-ST-GNN utilizes quantum state encoding to represent system states, extracts spatiotemporal features via convolutional operations on quantum graphs, and optimizes the reinforcement learning strategy through quantum variational algorithms. Furthermore, an adaptive quantum circuit generation mechanism is designed to automatically adjust the quantum circuit structure in response to dynamic system characteristics. Case analyses show that, compared with the traditional quantum-enhanced deep reinforcement learning (QE-DRL) method, QE-DRL-ST-GNN maintains frequency deviation within 0.05 Hz under extreme conditions, whereas the traditional deep reinforcement learning (DRL) method allows a deviation of 0.15 Hz, indicating an improvement of 66.67%. In terms of regulation time, QE-DRL-ST-GNN requires only 1.67 s in complex scenarios, representing a 47% reduction compared with the traditional DRL method. Additionally, in extreme conditions, the performance improves by 13 percentage points over the 83% achieved by the traditional DRL method.

Key words: hybrid energy storage frequency modulation, quantum enhanced learning, adaptive control, multi-timescale coordination, graph neural networks, hybrid quantum-classical control

中图分类号: