储能科学与技术 ›› 2016, Vol. 5 ›› Issue (4): 503-508.doi: 10.3969/j.issn.2095-4239.2016.04.014

• 研究及进展 • 上一篇    下一篇

60 MJ飞轮储能系统转子芯轴结构设计

汪  勇1,戴兴建1,李振智2   

  1. 1清华大学工程物理系,北京 100084;2中石化中原石油工程有限公司,河南 濮阳,457001
  • 收稿日期:2016-01-15 修回日期:2016-03-10 出版日期:2016-07-01 发布日期:2016-07-01
  • 通讯作者: 戴兴建,副教授,研究方向为飞轮储能技术与应用、复合材料力、转子动力学等,E-mail:daixj@mail.tsinghua. edu.cn。
  • 作者简介:汪勇(1989—),男,博士研究生,研究方向为复合材料力学,E-mail:wangyong12@mails.tsinghua.edu.cn
  • 基金资助:
    国家科技支撑计划(2014BAA04B02)。

Structural design of rotor and shaft in FESS with 60 MJ energy capacity

WANG Yong1, DAI Xingjian1, LI Zhenzhi2   

  1. 1Department of Engineering Physics, Tsinghua University, Beijing 100084, China; 2Sinopec Zhongyuan Petroleum Engineering Co. Ltd., Puyang 457001, Henan, China
  • Received:2016-01-15 Revised:2016-03-10 Online:2016-07-01 Published:2016-07-01

摘要:

研究设计额定转速为2700 r/min、储能量为60 MJ的合金钢飞轮,以实现石油钻机动力系统飞轮单机MW级输出功率。飞轮材料为35CrMoA合金钢,采用“H”形变截面,直径1600 mm,厚380 mm,质量4000 kg。芯轴与轮毂局部过盈配合,采用圆柱销传递飞轮与芯轴之间的扭矩。有限元计算表明,轮辐内厚外薄,实现近似等强度设计;轮缘加厚,调整质量分布,实现大转动惯量;底部圆柱销传递扭矩,局部应力比键连接优化。飞轮轴系具备2.5倍应力安全系数,额定转速下最大应力小于500 MPa。2016年3月飞轮设备调试成功,实现150~200 kW充电、500~1000 kW放电功能,储能密度4.17 W·h/kg,比功率250 W/kg,标志着我国具备了单机WM级飞轮储能设备研制能力。

关键词: 飞轮储能系统, 合金钢, 无键连接, 有限元分析

Abstract:

An alloy steel flywheel with 60 MJ storage energy at 2700 r/min rated speed was designed in this study, in order to achieve MW-level power output in the flywheel energy storage device of drilling rig power system. 35CrMoA steel was the selected material and manufactured into ‘H’ cross-section. The flywheel was 1600mm in diameter, 380mm in thickness and weighed 4000 kg. The core shaft was interference fitted with the hub locally to repeal assembly difficulty. While several cylindrical pins transferred the torque between flywheel and shaft instead. Finite element method (FEM) analysis evaluated these design ideas efficiently. The spoke formed thick inner and thin outer accorded with equal-strength design approximately. Besides, thicker flange benefitted to adjust mass distribution for larger rotary inertia. And the pins connection to transfer torque optimized local stress compared to traditional spline connection. The maximum stress in flywheel shafting system, owning 2.5 times' safety coefficient, was less than 500 MPa under the rated rotary speed. Flywheel energy storage (FES) device was debugged successfully in March 2016 with the energy density of 4.17 W·h·kg-1 and the secific power of 250 W·kg-1, achieving the functions of 150~200 kW charging and 500~1000 kW discharging. This project indicated that our country obtained the ability to develop a sigle FES equipment with MW-leveled power output.

Key words: flywheel energy storage system (FESS), alloy steel, keyless connection, FEM