储能科学与技术 ›› 2017, Vol. 6 ›› Issue (3): 451-463.doi: 10.12028/j.issn.2095-4239.2017.0032

• 特约文章 • 上一篇    下一篇

高比能锂硫电池功能电解质材料

王丽莉1,叶玉胜1,钱  骥1,李  丽1,2,吴  锋1,2,陈人杰1,2   

  1. 1北京理工大学材料学院,北京100081;2北京电动车辆协同创新中心,北京100081
  • 收稿日期:2017-03-27 修回日期:2017-04-13 出版日期:2017-05-01 发布日期:2017-05-01
  • 通讯作者: 陈人杰,教授,主要研究方向为新能源材料与功能器件,E-mail:chenrj@bit.edu.cn。
  • 作者简介:王丽莉(1991—),女,博士研究生,主要研究方向为锂硫电池电解质,E-mail:lilywang8991@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFB0100204),国家自然科学基金项目(21373028)。

Functional electrolytes for high specific energy lithium sulfur batteries

WANG Lili1, YE Yusheng1, QIAN Ji1, LI Li1,2, WU Feng1,2, CHEN Renjie1,2   

  1. 1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; 2 Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
  • Received:2017-03-27 Revised:2017-04-13 Online:2017-05-01 Published:2017-05-01

摘要:

锂硫电池具有能量密度高、单质硫来源广泛和环境友好等优势,是新型二次电池未来发展的方向之一。作为锂硫电池中的重要组成部分,功能电解质材料的物性特征与电池的整体性能密切相关。在当前电解质材料的研究中,还存在许多关键技术难题,如多硫化物溶解于锂硫电池电解质中所引起的穿梭效应,会导致锂硫电池库仑效率低、容量衰减快和自放电严重等问题。本文综述了面向锂硫电池应用的新型功能电解质材料的研究进展:①有机液体电解质中有机溶剂组分、锂盐和添加剂的优化改性对锂硫电池性能的影响;②离子液体电解质对多硫化物扩散的阻碍作用;③固态/半固态电解质对穿梭效应的抑制,并展望了锂硫电池用功能电解质材料的未来发展方向。

Abstract:

Currently lithium sulfur (Li-S) batteries are recognized as the most promising novel secondary battery candidates due to their high energy density, abundant sulfur and environment benign. The functional electrolyte is a major component of Li-S batteries, which physical property characteristics are closely related to the electrochemical performance of Li-S batteries. Nevertheless, its development is restricted by some key technologies. The polysulfides dissolve into electrolytes and cause the consequent shuttle phenomenon, resulting in low coulombic efficiency, fast capacity fade and serious self-discharge of Li-S batteries. This paper reviews the recent research progress for these problems of the electrolytes for Li-S batteries. ① the modification and optimization of the solvent components, lithium salts and additives of the organic liquid electrolytes to improve the performance of Li-S batteries, ② the effect on polysulfides dissolution by ionic liquid electrolytes, and ③ the suppression of the shuttle effects by (semi-) solid-state electrolytes. Finally, the future research trends of the functional electrolytes for Li-S electrolytes are proposed.