[1] KASZA K E, CHEN M M. Improvement of the performance of solar energy or waste heat utilization systems by using phase-change slurry as an enhanced heat-transfer storage fluid[J]. J. Sol. Energy Eng., 1985, 107(3): 229-236.
[2] CUNHA J P D, EAMES P. Thermal energy storage for low and medium temperature applications using phase change materials—A review[J]. Applied Energy, 2016, 177: 227-238.
[3] ORO E, De GARCÍA A, CASTELL A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533.
[4] BORREGUERO A M, VALVERDE J L, RODRÍGUEZ J F, et al. Synthesis and CHARACTERIzation of microcapsules containing Rubitherm®RT27 obtained by spray drying[J]. Chemical Engineering Journal, 2011, 166: 384-390.
[5] HAWLADER M N A, UDDIN M S, KHIN M M. Microencapsulated PCM thermal-energy storage system[J]. Applied Energy, 2003, 74: 195-202.
[6] GAONKAR A G, VASISHT N, KHARE A R, SOBEL R EDITED. Microencapsulation in the food industry[J]. A Practical Implementation Guide, 2014 : 125-137.
[7] MALEKIPIRBAZARI M, SADRAMELI S M, DORKOOSH F, et al. Synthetic and physical characterization of phase change materials microencapsulated by complex coacervation for thermal energy storage applications[J]. Int. J. Energ. Res., 2014, 38: 1492-500.
[8] GHOSH S K. Functional coatings and microencapsulation: A general perspective. Functional coatings[J]. Wiley-VCH Verlag gmbh & Co. Kgaa, 2006: 1-28.
[9] NIHANT N, STASSEN S, GRANDFILS C, et al. Microencapsulation by coacervation of poly(lactide-co-glycolide). III. Characterization of the final microspheres[J]. Polym. Int., 1994, 34: 289-299.
[10] BAYÉS-GARCÍA L, VENTOLÀ L, CORDOBILLA R, et al. Phase change materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability[J]. Solar Energy Materials and Solar Cells, 2010, 94: 1235-1240.
[11] ÖZONUR Y, MAZMAN M, PAKSOY H Ö, et al. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material[J]. Int. J. Energy Res., 2006, 30: 741-749.
[12] JAMEKHORSHID A, SADRAMELI S M, FARID M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium[J]. Renew. Sust. Energ. Rev., 2014, 31: 531-542.
[13] FANG Y T, LIU X, LIANG X H, et al. Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage[J]. Applied Energy, 2014, 132: 551-556.
[14] WANG T, LI H, LU Q L, et al. Preparation and characterization of Glauber's salt microcapsules for thermal energy storage[J]. Tenside, Surfactants, Detergents, 2017, 54(1): 32-37.
[15] HAN P, QIU X, LU L, et al. Fabrication and characterization of a new enhanced hybrid shell micro PCM for thermal energy storage[J]. Energy Conversion and Management, 2016, 126: 673-685.
[16] QIU X, LU L, HAN P, et al. Fabrication, thermal property and thermal reliability of microencapsulated paraffin with ethyl methacrylate-based copolymer shell[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124: 1291-1299.
[17] DAI X, YUAN W. Preparation and characterisation of doubleshell n-octadecane phase change material encapsulation[J]. Materials Research Innovations, 2016, 20 (6): 433-438.
[18] WANG G X, XU WB, HOU Q, et al. Microwave-assisted synthesis of poly(urea-formaldehyde)/lauryl alcohol phase change energy storage microcapsules[J]. Polymer Science-Series B, 2016, 58(3): 321-328.
[19] ZHAN S, CHEN S, CHEN L, et al. Preparation and characterization of polyurea microencapsulated phase change material by interfacial polycondensation method[J]. Powder Technology, 2016, 292: 217-222.
[20] KONUKLU Y, PAKSOY H Ö. Polystyrene-based caprylic acid microencapsulation for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2017, 159: 235-242.
[21] SUN N, XIAO Z. Paraffin wax-based phase change microencapsulation embedded with silicon nitride nanoparticles for thermal energy storage[J]. Journal of Materials Science, 2016, 51(18): 8550-8561.
[22] YANG Y, KUANG J, WANG H, et al. Enhancement in thermal property of phase change microcapsules with modified silicon nitride for solar energy[J]. Solar Energy Materials and Solar Cells, 2016, 151: 89-95.
[23] LIU J, CHEN L, FANG X, et al. Preparation of graphite nanoparticles-modified phase change microcapsules and their dispersed slurry for direct absorption solar collectors[J]. Solar Energy Materials and Solar Cells, 2017, 159: 159-166.
[24] WANG T, WANG S, GENG L, et al. Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network[J]. Applied Energy, 2016, 179: 601-608.
[25] ZHANG L, ZHANG Y, XU H, et al. Polymer/graphene oxide composite microcapsules with greatly improved barrier properties[J]. RSC Advances, 2016, 6(9): 7618-7625.
[26] TAGUCHI Y, MORITA R, SAITO N, et al. Formation of Pickering emulsion by use of PCM and SiC and application to preparation of hybrid microcapsules with interfacial polycondensation reaction[J]. Polymers for Advanced Technologies, 2016, 27(4): 422-428.
[27] ZHANG X, WANG X, WU D. Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness[J]. Energy, 2016, 111: 498-512.
[28] JIN Y, LEE W P, MUSINA Z, et al. A one-step method for producing microencapsulated phase change materials[J]. Particuology, 2010, 8: 588-590.
[29] CAO L, TANG F, FANG G. Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials[J]. Sol. Energy Mater. Sol. Cells, 2014, 123: 183-188.
[30] FANG G, LI H, LIU X, et al. Experimental investigation of performances of microcapsule phase change material for thermal energy storage[J]. Chem. Eng. Technol., 2010, 33: 227-230.
[31] TANG F, LIU L, ALVA G, et al. Synthesis and properties of microencapsulated octadecane with silica shell as shape-stabilized thermal energy storage materials[J]. Solar Energy Materials and Solar Cells, 2017, 160: 1-6.
[32] PENG K, FU L, LI X, et al. Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage[J]. Applied Clay Science, 2017, 138: 100-106.
[33] ZHAO L, WANG H, LUO J, et al. Fabrication and properties of microencapsulated n-octadecane with TiO2 shell as thermal energy storage materials[J]. Solar Energy, 2016, 127: 28-35.
[34] GONDORA W, DOUDIN K, NOWAKOWSKI D J, et al. Encapsulation of phase change materials using rice-husk-char[J]. Applied Energy, 2016, 182: 274-281.
[35] DAO T D, JEONG H M. A Pickering emulsion route to a stearic acid/graphene core-shell composite phase change material[J]. Carbon, 2016, 99: 49-57.
[36] WANG T, WANG S, LUO R, et al. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage[J]. Applied Energy, 2016, 171: 113-119.
[37] LI J, LU W, LUO Z, ZENG Y. Synthesis and thermal properties of novel sodium nitrate microcapsules for high-temperature thermeal energy storage[J]. Solar Energy Materials and Solar Cells, 2017, 159: 440-446.
[38] TYAGI V V, KAUSHIK S C, TYAGI S K, et al. Development of phase change materials based microencapsulated technology for buildings: A review[J]. Renew. Sust. Energ. Rev., 2011, 15: 1373-91.
[39] SCHMIDT M. Phase change materials – latent heat storage for interior climate control[J]. In: BASF, editor. Ludwigshafen, Germany, 2007.
[40] Cool Buildings with Micronal®PCM[J]. In: BASF, editor. Germany, 2014.
[41] CASTELLÓN C, MEDRANO M, ROCA J, et al. Use of microencapsulated phase change materials in building applications[J]. University of Lleida, Spain, 2007.
[42] YOU M, ZHANG X X, LI W, et al. Effect of microPCMs on the fabrication of microPCMs/polyurethane composites foams[J]. Thermochimica Acta, 2008, 472: 20-24.
[43] ZHAO C Y, ZHANG G H. Review on mocroencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2011,15(8): 3813-3832.
[44] SALAMONE J J, MEWMAN M. Heat transfer design characteristics: Water suspension of solids[J]. Ind. Eng. Chem., 1955, 47: 283-288.
[45] SOHN C W, CHEN M M. Microconvective thermal conductivity in disperse two-phase mixtures as observed in a low velocity couette flow experiment[J]. J. Heat Transfer, 1981, 103(1): 47-51.
[46] AHUJA A S. Augmentation of heat transport in laminar flow of polystyrene suspensions. I Experiment and results[J]. J. Applied Physics, 1975, 46: 3408-3416.
[47] WEN D S, DING Y L. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions[J]. International Journal of Heat and Mass Transfer, 2004, 47(24): 5181-5188.
[48] ZHAO Z, HAO R, SHI Y. Parametric analysis of enhanced heat transfer for laminar flow of microencapsulated phase change suspension in a circular tube with constant wall temperature[J]. Heat Transfer Engineering, 2008, 29: 97-106.
[49] YAMAGISHI Y, TAKEUCHI H, PYATENKO A T, et al. Characteristics of microencapsulated PCM slurry as a heat-transfer fluid[J]. AIChE Journal, 1999, 45: 696-707.
[50] DELGADO M, LAZARO A, MAZO J, et al. Experimental analysis of microencapsulated PCM slurry as thermal storage system and as heat transfer fluid in laminar flow[J]. Applied Thermal Engineering, 2012, 36: 370-377.
[51] CHARUNYAKORN P, SENGUPTA S, ROY S K. Forced convection heat transfer in microencapsulated phase change material slurries: Flow in circular ducts[J]. International Journal of Heat and Mass Transfer, 1991, 34: 819-833.
[52] GOEL M, ROY S K, SENGUPTA S. Laminar forced convective heat transfer in microencapsulated phase change material suspensions: Flow in circular ducts[J]. Int. J. Heat Transfer, 1994, 37: 593-604.
[53] LIU L, ALVA G, JIA Y, et al. Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage[J]. Energy and Buildings, 2017, 134: 37-51.
[54] EUNSOO C, CHO Y I, LORSCH H G. Forced convection heat transfer with phase-change-material slurries: Turbulent flow in a circular tube[J]. International Journal of Heat and Mass Transfer, 1994, 37: 207-215.
[55] WANG X, NIU J, LI Y, et al. Flow and heat transfer behaviours of phase change material slurries in a horizontal circular tube[J]. Int. J. of Heat and Mass Transfer, 2007, 50: 2480-2491.
[56] WANG X, NIU J, LI Y, et al. Heat transfer of microencapsulated PCM slurry flow in a circular tube[J]. AIChE Journal, 2008, 54: 1110-1120.
[57] HE Y, JIN Y, CHEN H, et al. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50: 2272-2281
|