储能科学与技术 ›› 2018, Vol. 7 ›› Issue (6): 1146-1151.doi: 10.12028/j.issn.2095-4239.2018.0129

• 电池安全性专刊 • 上一篇    下一篇

混合动力汽车用锂电池热管理系统

赵国柱, 李亮, 招晓荷, 周廷博   

  1. 南京农业大学工学院, 江苏 南京 210031
  • 收稿日期:2018-07-29 修回日期:2018-08-11 出版日期:2018-11-01 发布日期:2018-08-18
  • 通讯作者: 赵国柱(1968-),男,博士,副教授,主要研究方向为新能源汽车再生制动技术及储能系统能量管理技术,E-mail:zhaogz@njau.edu.cn。
  • 作者简介:赵国柱(1968-),男,博士,副教授,主要研究方向为新能源汽车再生制动技术及储能系统能量管理技术,E-mail:zhaogz@njau.edu.cn。
  • 基金资助:
    国家自然科学基金项目(51005113),江苏省农机局科研启动基金项目(Gxz10003)。

Lithium battery thermal management system for hybrid vehicles

ZHAO Guozhu, LI Liang, ZHAO Xiaohe, ZHOU Tingbo   

  1. College of Engineering, Nanjing Agricultural University, Nanjing 210031, Jiangsu, China
  • Received:2018-07-29 Revised:2018-08-11 Online:2018-11-01 Published:2018-08-18
  • Contact: 10.12028/j.issn.2095-4239.2018.0129

摘要: 为研究动力电池组的温度特性以及维持其工作在最佳的温度范围内,以锂离子电池为研究对象,设计了一种新型混合动力汽车的电池热管理系统,利用空调系统和发动机排气系统来调控电池组的温度。建立了锂电池组的三维瞬态产热数值模型,以电池组的三维尺寸和进风口流速为输入参数,以降低电池组的最大温升和提高电池组的温度均匀性为输出参数,利用FLUENT仿真软件和DesignXplorer模块进行联合优化设计了电池组的结构。优化后的电池组的温升比优化前降低了5.39 K,电池组温差降低了6.41 K。分析了恒倍率放电以及对流换热系数对单体电池温升的影响,研究表明:放电倍率越大电池温升越快,放电结束后电池的温度越高,在对流换热系数小于30 W/(m2·K)时,散热效果明显。对电池组在不同条件下加热或者冷却进行了仿真分析,验证了该电池热管理系统的可行性。

关键词: 混合汽车, 电池热管理系统, FLUENT, 发动机排气系统, 空调系统

Abstract: In order to study the temperature characteristics of the power battery pack and maintain its working temperature within the optimal temperature range, a lithium-ion battery is taken as the research object, and a battery thermal management system for the hybrid vehicle is proposed. The air conditioning system and the engine exhaust system are used to regulate the temperature of battery pack. A three-dimensional transient heat generation numerical model of the lithium battery pack was established. The size of the battery pack and the inlet air flow rate were used as input parameters to reduce the maximum temperature rise of the battery pack and improve the temperature uniformity of the battery pack as output parameters, In order to reduce the maximum temperature rise of the battery pack and increase the temperature uniformity, the structure of the battery pack was designed and optimized by using FLUENT simulation software and DesignXplorer module. The optimized temperature rise of the battery pack was 5.39 K lower than that before optimization, and the temperature difference was reduced by 6.41 K. The effects of constant rate discharge and convective heat transfer coefficient on the temperature rise were analyzed. The research shows that the higher the discharge rate, the faster the temperature rise of the battery. The higher the temperature of the battery after the discharge is completed, the heat dissipation effect is obvious when the convective heat transfer coefficient is less than 30 W/(m2·K). By the simulation analysis of the heating or cooling of the battery pack under different conditions, the feasibility of the battery thermal management system was verified.

Key words: hybrid vehicle, battery thermal management system, FLUENT, engine exhaust system, air conditioning system

中图分类号: