All-solid-state lithium-ion batteries have developed rapidly due to improved safety performance and energy storage capabilities. Chelated boron lithium salt is a new type of solid polymer electrolyte (SPE) with a larger anionic radius. It can disrupt the crystallinity of the matrix, such as polyethylene oxide (PEO) or thermoplastic polyurethane (TPU), so that more lithium ions can intercalate into the polymer segments of the matrix and therefore improve the dissociation of lithium-ion in the electrolyte. This study used chelated boron lithium salt and PEO/TPU/BaTiO3 to form the SPE. Analysis of the morphology and structure, mechanical properties, thermodynamic properties, electrochemical properties, and battery performance showed that the lithium[(1,2-benzenediolate(2)-O,O′)(1,3-malonate-O,O′)] borate (LiBDMB) system gives the best SPE performance. At 60 ℃, the ion conductivity of the LiBDMB SPE system reached the order of 10-4 S/cm. The discharge capacity of the assembled battery reached 142 mW·h/g at a rate of 0.2 C and performed well after 50 cycles.
WU Xie. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts[J]. Energy Storage Science and Technology, 2021, 10(1): 96-103
DAVIS V K, BATES C M, OMICHI K, et al. Room-temperature cycling of metal fluoride electrodes: Liquid electrolytes for high-energy fluoride ion cells[J]. Science, 2018, 362: 1144-1148.
ZACHMAN M J, TU Z, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560: 345-349.
JUNG H G, HASSOUN J, PARK J B, et al. An improved high-performance lithium-air battery[J]. Nat Chem, 2012, 4: 579-585.
KERMAN K, LAI B K, RAMANATHAN S. Free standing oxide alloy electrolytes for low temperature thin film solid oxide fuel cells[J]. J Power Sources, 2012, 202: 120-125.
SHI J, YANG Y F, SHAO H X. Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries[J]. J Membrane Science, 2018, 547: 1-10.
HAFNER S, GUTHREY H, LEE S H, et al. Synchronized electrospinning and electrospraying technique for manufacturing of all-solid-state lithium-ion batteries[J]. J Power Sources, 2019, 431: 17-24.
AmMARAL F A, SOUSA R M, MORAIS L C, et al.Preparation and characterization of the porous solid polymer electrolyte of PAN/PVA by phase inversion[J]. J Appl Electrochem, 2015, 45: 809-820.
XUE Z M, ZHAO J F, DING J, et al. LBDOB, a new lithium salt with benzenediolato and oxalato complexes of boron for lithium battery electrolytes[J]. J Power Sources, 2010, 195: 853-856.
LI X Y, XUE Z M, ZHAO J F, et al. A new lithium salt with tetrafluoro-1,2-benzenediolato and oxalato complexes of boron for lithium battery electrolytes[J]. J Power Sources, 2013, 235: 274-279.
XUE Z M, SUN B B, ZHOU W, et al. A new lithium salt with dihydroxybenzene and lithium tetrafluoroborate for lithium battery electrolytes[J]. J Power Sources, 2011, 196 : 8710-8713.
XUE Z M, JI C Q, ZHOU W, et al. A new lithium salt with 3-fluoro-1,2-benzenediolato and oxalato complexes of boron for lithium battery electrolytes[J]. J Power Sources, 2010, 195: 3689-3692.
XU W, ANGELLZ C A. LiBOB and its derivatives weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions[J]. Electrochemical and Solid-State Letters, 2001, 4(1): 1-4.
XUE Z M, ZHOU W, DING J, et al. Electronic structures and molecular properties of FLBDOB and its derivatives: A combined experimental and theoretical study[J]. Electrochimica Acta, 2010, 55: 5342-5348.
XUE Z M, ZHAO B H, CHEN C H. A new lithium salt with 3-fluoro-1,2-benzenediolato and lithium tetrafluoroborate for lithium battery electrolytes[J]. J Power Sources, 2011, 196: 6478-6482.
BARTHEL J, SCHMIDT M, GORES H J. Lithium bis[5-fluoro-2-olato-1-benzenesulfonato (2-)-O,O']borate(l-), a new anodically and cathodically stable salt for electrolytes of lithium-ion cells[J]. J Electrochem Soc, 1998, 145 (2): 17-20.
TANG Y N, XUE Z M, DING J, et al. Two unsymmetrical lithium organoborates with mixed-ligand of croconato and oxalicdiolato or benzenediolato for lithium battery electrolytes[J]. J Power Sources, 2012, 218: 134-139.
XUE Z M, ZHANG X F, ZHOU W, et al. A new lithium salt with tetrafluoro-1,2-benzenediolato and lithium tetrafluoroborate for lithium battery electrolytes[J]. Journal of Power Sources, 2012, 202: 336-340.
XUE Z M, ZHOU W, SUN B B , et al. Density functional theory study on LDFBDB and its derivatives: Electronic structures, energies, and molecular properties[J]. Electrochimica Acta, 2011, 56: 8770-8775.
DAHB M, GHAMOUSS F, TRAN-VAN F, et al. Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage[J]. J Power Sources, 2011, 196: 9743-9750.
ZHOU H M, FANG Z Q , LI J. LiPF6 and lithium difluoro (oxalato) borate/ethylene carbonate+dimethyl carbonate+ethyl(methyl)carbonate electrolyte for Li4Ti5O12 anode[J]. J Power Sources, 2013, 230: 148-154.
TAO C, GAO M H, YIN B H, et al. A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries[J]. Electrochimica Acta , 2017, 257: 31-39.
SUN H Y, SOHN H J, YAMAMOTO O, et al. Enhanced lithium-ion transport in PEO-based composite polymer electrolytes with ferroelectric BaTiO3[J]. J Electrochemic Soc, 1999, 146 (5): 1672-1676.
ZHANG J J, DONG T T, YANG J F, et al. Research progress, challenge and perspective of all-solid-state polymer lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 861-868.
YANG J f, LI L Y, WU Z Y, et al. Progress of inorganic solid electrolyte for lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(5): 829-837.
HEYL A, RISSEN J J. Electrochemical detoxification of waste water without additives using solid polymer electrolyte (SPE) technology[J]. J Appl Electrochemistry , 2006, 36: 1281-1290.
STEINHAUER M, DIEMANT T, HEIM C, et al. Insights into solid electrolyte interphase formation on alternative anode materials in lithium-ion batteries[J]. J Appl Electrochem, 2017, 47: 249-259.
TAO R, FUJINAMI T. Improvement of electrochemical properties of PEO-LiTFSI electrolyte by incorporation of boroxine polymers with different backbone lengths[J]. J Appl Electrochemistry, 2005, 35: 163-168.