Due to its high energy density, high safety, wide working temperature range, and long service life, solid-state lithium metal battery has been one of the important development directions of next-generation lithium batteries. As a typical oxide solid electrolyte, Li7La3Zr2O12 (LLZO) presents high lithium-ion conductivity, wide electrochemical window, high mechanical strength, and good thermal stability. Thus, LLZO solid-state lithium metal batteries have attracted significant attention in academic and industrial fields. However, the possible formation of lithium dendrite through the solid electrolyte and the large interface resistance between electrolyte and electrode limit severely its practical deployment. These issues are correlated with the microstructural characteristics of LLZO electrolyte, the chemical and electrochemical compatibility between cathode and LLZO, the solid contact at the cathode/electrolyte interface, and the wettability of lithium anode with LLZO electrolyte. This study reviews the reported advancements and summaries the strategies to solve these problems. For the cathode, the compatibility between the positive electrode and LLZO, and interface resistance can be improved by means of the surface coating of the cathode active particles, the construction of 3D electrolyte interface, the introduction of a flexible polymer or gel electrolyte as interlayer, and composition of positive active particles with flexible or viscous ionic conductive materials. For the anode interface, eliminating the lithium carbonate on the surface of LLZO electrolyte, introducing reactive or flexible intermediate layer, and modulating the lithium anode composition can improve the wettability of lithium to LLZO electrolyte; thus, reducing the interface resistance. Finally, the future research direction and perspective of LLZO-based solid-state battery is proposed.
ZHANG Saisai. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress[J]. Energy Storage Science and Technology, 2021, 10(3): 863-871
Fig. 3
(a) optical and SEM images of cathode-infiltrated LLZO bilayer[26]; (b) SEM images of Li2.3C0.7B0.3O3+LLZO@Li2CO3+LCO@Li2CO3 cathode composite before and after sintering[27]
Fig. 5
(a) schematic illustration of Li/LLZTO@SnS2/SnS2@CNT all-solid-state battery and charge/discharge profiles at 0.1 C[49], (b) schematics of proposed mechanisms at the interface of Li3PO4@LLZTO and charge/discharge curves of Li/Li3PO4@LLZTO/LiFePO4 at different current densities[51]
长时间的充放电循环,会导致锂枝晶沿着陶瓷固态电解质孔洞和晶界等缺陷生长。为了表征电解质抵抗枝晶生长的能力,Sakamoto等[52]在2016年首次利用临界电流密度(the maximum sustainable current density or critical current density,CCD),表征不同温度下LLZO对称电池在能够维持充放电状态而不发生锂枝晶短路的最大电流密度(mA/cm2)。但是目前业界对于CCD的测定还没有给出具体测试标准,比如电解质厚度、单次充放电时间等,这些都会对CCD产生一定影响。
PELJO P, GIRAULT H H. Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception[J]. Energy & Environmental Science, 2018, 11(9): 2306-2309.
ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693.
HAN F, ZHU Y, HE X, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.201501590.
JALEM R, MORISHITA Y, OKAJIMA T, et al. Experimental and first-principles DFT study on the electrochemical reactivity of garnet-type solid electrolytes with carbon[J]. Journal of Materials Chemistry A, 2016, 4(37): 14371-14379.
CONNELL J G, FUCHS T, HARTMANN H, et al. Kinetic versus thermodynamic stability of LLZO in contact with lithium metal[J]. Chemistry of Materials, 2020, 32(23): 10207-10215.
KIM K H, IRIYAMA Y, YAMAMOTO K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery[J]. Journal of Power Sources, 2011, 196(2): 764-767.
PARK K, YU B C, JUNG J W, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12[J]. Chemistry of Materials, 2016, 28(21): 8051-8059.
WAKASUGI J, MUNAKATA H, KANAMURA K. Thermal stability of various cathode materials against Li6.25Al0.25La3Zr2O12 electrolyte[J]. Electrochemistry, 2017, 85(2): 77-81.
MIARA L J, RICHARDS W D, WANG Y E, et al. First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets[J]. Chemistry of Materials, 2015, 27(11): 4040-4047.
WANG L P, ZHANG X D, WANG T S, et al. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers[J]. Advanced Energy Materials, 2018, 8(24): doi: 10.1002/aenm.201801528.
WANG C, LI X, ZHAO Y, et al. Manipulating interfacial nanostructure to achieve high-performance all-solid-state lithium-ion batteries[J]. Small Methods, 2019, 3(10): doi: 10.1002/smtd.201900261.
LIU T, REN Y, SHEN Y, et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance[J]. Journal of Power Sources, 2016, 324: 349-357.
LIU T, ZHANG Y B, ZHANG X, et al. Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification[J]. Journal of Materials Chemistry A, 2018, 6(11): 4649-4657.
ZHOU W D, WANG S F, LI Y T, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388.
SUBRAMANI R, TSENG Y H, LEE Y L, et al. High Li+ transference gel interface between solid-oxide electrolyte and cathode for quasi-solid lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(19): 12244-12252.
HITZ G T, MCOWEN D W, ZHANG L, et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture[J]. Materials Today, 2019, 22: 50-57.
CHEN C, LI Q, LI Y Q, et al. Sustainable interfaces between Si anodes and garnet electrolytes for room-temperature solid-state batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 2185-2190.
LUO W, GONG Y, ZHU Y, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Advanced Materials, 2017, 29(22): doi: 10.1002/adma.201606042.
BI Z, ZHAO N, MA L, et al. Interface engineering on cathode side for solid garnet batteries[J]. Chemical Engineering Journal, 2020, 387: doi: 10.1016/j.cej.2020.124089.
HE M, CUI Z, CHEN C, et al. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries[J]. Journal of Materials Chemistry A, 2018, 6(24): 11463-11470.
YI E, SHEN H, HEYWOOD S, et al. All-solid-state batteries using rationally designed garnet electrolyte frameworks[J]. ACS Applied Energy Materials, 2020, 3(1): 170-175.
DU F, ZHAO N, LI Y, et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. Journal of Power Sources, 2015, 300: 24-28.
LIN D C, LIU W, LIU Y Y, et al. High ionic conductivity of composite solid polymer electrolyte viain situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Letters, 2016, 16(1): 459-465.
CROCE F, PERSI L L, SCROSATI B, et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes[J]. Electrochimica Acta, 2001, 46(16): 2457-2461.
ZHENG J, TANG M, HU Y Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie-International Edition, 2016, 55(40): 12538-12542.
MONROE C, NEWMAN J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): doi: 10.1149/1.1850854
NI J E, CASE E D, SAKAMOTO J S, et al. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet[J]. Journal of Materials Science, 2012, 47(23): 7978-7985.
YU S, SCHMIDT R D, GARCIA-MENDEZ R, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2016, 28(1): 197-206.
PORZ L, SWAMY T, SHELDON B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20): doi: 10.1002/aenm.201701003.
YU S, SIEGEL D J. Grain boundary softening: A potential mechanism for lithium metal penetration through stiff solid electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38151-38158.
RAJ R, WOLFENSTINE J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries[J]. Journal of Power Sources, 2017, 343: 119-126.
HAN F, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196.
CHENG E J, SHARAFI A, SAKAMOTO J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte[J]. Electrochimica Acta, 2017, 223: 85-91.
LIU B, ZHANG L, XU S, et al. 3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries[J]. Energy Storage Materials, 2018, 14: 376-382.
SHAO Y J, WANG H C, GONG Z L, et al. Drawing a soft interface: An effective interfacial modification strategy for garnet-type solid-state Li batteries[J]. ACS Energy Letters, 2018, 3(6): 1212-1218.
FU K K, GONG Y, LIU B, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 3(4): doi: 10.1126/sciadv.1601659.
HAN X, GONG Y, FU K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579.
SHI K, WAN Z, YANG L, et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angewandte Chemie, 2020, 59(29): 11784-11788.
DUAN H, YIN Y X, SHI Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. Journal of the American Chemical Society, 2018, 140(1): 82-85.
LIU B Y, GONG Y H, FU K, et al. Garnet solid electrolyte protected Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18809-18815.
CHEN S, ZHANG J, NIE L, et al. All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte[J]. Advanced Materials, 2021, 33(1): doi: 10.1002/adma.202002325.
ZHOU D, REN G X, ZHANG N, et al. Garnet electrolytes with ultralow interfacial resistance by SnS2 coating for dendrite-free all-solid-state batteries[J]. ACS Applied Energy Materials, 2021, 4(3): 2873-2880.
PERVEZ S A, KIM G, VINAYAN B P, et al. Overcoming the interfacial limitations imposed by the solid-solid interface in solid-state batteries using ionic liquid-based interlayers[J]. Small, 2020, 16(14): doi: 10.1002/smll.202070078.
DENG T, JI X, ZHAO Y, et al. Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries[J]. Advanced Materials, 2020, 32(23): doi: 10.1002/adma.202000030.
SHARAFI A, MEYER H M, NANDA J, et al. Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources, 2016, 302: 135-139.
SHARAFI A, KAZYAK E, DAVIS A L, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12[J]. Chemistry of Materials, 2017, 29(18): 7961-7968.
WANG C, XIE H, PING W, et al. A general, highly efficient, high temperature thermal pulse toward high performance solid state electrolyte[J]. Energy Storage Materials, 2019, 17: 234-241.
LI Y T, CHEN X, DOLOCAN A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries[J]. Journal of the American Chemical Society, 2018, 140(20): 6448-6455.
HUO H, CHEN Y, ZHAO N, et al. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries[J]. Nano Energy, 2019, 61: 119-125.
ALEXANDER G V, PATRA S, SOBHAN S, et al. Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors[J]. Journal of Power Sources, 2018, 396: 764-773.
KRAUSKOPF T, HARTMANN H, ZEIER W G, et al. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—An electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14463-14477.
WANG C, XIE H, ZHANG L, et al. Universal soldering of lithium and sodium alloys on various substrates for batteries[J]. Advanced Energy Materials, 2018, 8(6): doi: 10.1002/aenm.201701963.
... 金属锂状态的调控也可以改善其与LLZO固态电解质界面的结合状态,从而减小界面电阻.金属锂的调控策略包括:高温加热[58]、外加机械压力[59]、真空沉积[14]和合金化[60].锂与其他元素合金化,可以调整熔融锂的表面能和黏度,进而改善Li对LLZO固态电解质的润湿性.相比于在LLZO表面引入中间层改善界面电阻的方法,这种金属锂合金化的方法构建的界面更稳定,在长期脱嵌锂循环过程中不会产生新的锂沉积界面;在LLZO表面引入的锂反应活性中间层则有可能在初始嵌锂后体积膨胀,以及在电池循环过程脱嵌锂发生体积变化,产生和LLZO的剥离,从而破坏界面结构,增大界面电阻.Matyjaszewski等[61]制备了一种混合电导聚合物基质中均匀分布微米锂颗粒的半液态锂负极,如图6(b)所示,将电极-电解质从固固转变为液固组成,改善了界面接触,降低了界面电阻,其对称电池在1 mA/cm2电流密度下可稳定循环400 h. ...
... [26],复合正极Li2.3C0.7B0.3O3+LLZO@Li2CO3+LCO@Li2CO3烧结前后SEM(b)[27](a) optical and SEM images of cathode-infiltrated LLZO bilayer[26]; (b) SEM images of Li2.3C0.7B0.3O3+LLZO@Li2CO3+LCO@Li2CO3 cathode composite before and after sintering[27]Fig. 3
... [27](a) optical and SEM images of cathode-infiltrated LLZO bilayer[26]; (b) SEM images of Li2.3C0.7B0.3O3+LLZO@Li2CO3+LCO@Li2CO3 cathode composite before and after sintering[27]Fig. 3
... [49],Li3PO4包覆LLZTO改善负极界面机理示意图 和Li/Li3PO4@LLZTO/LiFePO4电池不同电流密度下充放电曲线(b)[51](a) schematic illustration of Li/LLZTO@SnS2/SnS2@CNT all-solid-state battery and charge/discharge profiles at 0.1 C[49], (b) schematics of proposed mechanisms at the interface of Li3PO4@LLZTO and charge/discharge curves of Li/Li3PO4@LLZTO/LiFePO4 at different current densities[51]Fig. 5
长时间的充放电循环,会导致锂枝晶沿着陶瓷固态电解质孔洞和晶界等缺陷生长.为了表征电解质抵抗枝晶生长的能力,Sakamoto等[52]在2016年首次利用临界电流密度(the maximum sustainable current density or critical current density,CCD),表征不同温度下LLZO对称电池在能够维持充放电状态而不发生锂枝晶短路的最大电流密度(mA/cm2).但是目前业界对于CCD的测定还没有给出具体测试标准,比如电解质厚度、单次充放电时间等,这些都会对CCD产生一定影响. ...
... [49], (b) schematics of proposed mechanisms at the interface of Li3PO4@LLZTO and charge/discharge curves of Li/Li3PO4@LLZTO/LiFePO4 at different current densities[51]Fig. 5
长时间的充放电循环,会导致锂枝晶沿着陶瓷固态电解质孔洞和晶界等缺陷生长.为了表征电解质抵抗枝晶生长的能力,Sakamoto等[52]在2016年首次利用临界电流密度(the maximum sustainable current density or critical current density,CCD),表征不同温度下LLZO对称电池在能够维持充放电状态而不发生锂枝晶短路的最大电流密度(mA/cm2).但是目前业界对于CCD的测定还没有给出具体测试标准,比如电解质厚度、单次充放电时间等,这些都会对CCD产生一定影响. ...
... [51](a) schematic illustration of Li/LLZTO@SnS2/SnS2@CNT all-solid-state battery and charge/discharge profiles at 0.1 C[49], (b) schematics of proposed mechanisms at the interface of Li3PO4@LLZTO and charge/discharge curves of Li/Li3PO4@LLZTO/LiFePO4 at different current densities[51]Fig. 5
长时间的充放电循环,会导致锂枝晶沿着陶瓷固态电解质孔洞和晶界等缺陷生长.为了表征电解质抵抗枝晶生长的能力,Sakamoto等[52]在2016年首次利用临界电流密度(the maximum sustainable current density or critical current density,CCD),表征不同温度下LLZO对称电池在能够维持充放电状态而不发生锂枝晶短路的最大电流密度(mA/cm2).但是目前业界对于CCD的测定还没有给出具体测试标准,比如电解质厚度、单次充放电时间等,这些都会对CCD产生一定影响. ...
... [51]Fig. 5
长时间的充放电循环,会导致锂枝晶沿着陶瓷固态电解质孔洞和晶界等缺陷生长.为了表征电解质抵抗枝晶生长的能力,Sakamoto等[52]在2016年首次利用临界电流密度(the maximum sustainable current density or critical current density,CCD),表征不同温度下LLZO对称电池在能够维持充放电状态而不发生锂枝晶短路的最大电流密度(mA/cm2).但是目前业界对于CCD的测定还没有给出具体测试标准,比如电解质厚度、单次充放电时间等,这些都会对CCD产生一定影响. ...
1
... 长时间的充放电循环,会导致锂枝晶沿着陶瓷固态电解质孔洞和晶界等缺陷生长.为了表征电解质抵抗枝晶生长的能力,Sakamoto等[52]在2016年首次利用临界电流密度(the maximum sustainable current density or critical current density,CCD),表征不同温度下LLZO对称电池在能够维持充放电状态而不发生锂枝晶短路的最大电流密度(mA/cm2).但是目前业界对于CCD的测定还没有给出具体测试标准,比如电解质厚度、单次充放电时间等,这些都会对CCD产生一定影响. ...
1
... 研究发现LLZO固态电解质会与空气中的二氧化碳和水反应,直接或间接生成碳酸锂,如反应式(1)~(3)所示[53].LLZO表面的碳酸锂不具有亲锂性,因此会显著增大LLZO和金属锂之间的界面阻抗,进而影响固态电池的容量和循环稳定性.消除疏锂的Li2CO3可显著改善LLZO和金属锂的浸润性,降低界面电阻.消除方法包括简单的机械磨除[54]、热处理[55]或气氛热处理[54],中间层反应还原[56]、酸处理[57]等.Sun等[57]利用1 mol/L盐酸30 s快速处理LLZTO电解质,可以去除其表面Li2CO3,改善金属锂与LLZO的接触[图6(a)],使界面电阻降低至26 Ω·cm2,其对称电池可以在0.2 mA/cm2电流密度下稳定循环700 h. ...
2
... 研究发现LLZO固态电解质会与空气中的二氧化碳和水反应,直接或间接生成碳酸锂,如反应式(1)~(3)所示[53].LLZO表面的碳酸锂不具有亲锂性,因此会显著增大LLZO和金属锂之间的界面阻抗,进而影响固态电池的容量和循环稳定性.消除疏锂的Li2CO3可显著改善LLZO和金属锂的浸润性,降低界面电阻.消除方法包括简单的机械磨除[54]、热处理[55]或气氛热处理[54],中间层反应还原[56]、酸处理[57]等.Sun等[57]利用1 mol/L盐酸30 s快速处理LLZTO电解质,可以去除其表面Li2CO3,改善金属锂与LLZO的接触[图6(a)],使界面电阻降低至26 Ω·cm2,其对称电池可以在0.2 mA/cm2电流密度下稳定循环700 h. ...
... [54],中间层反应还原[56]、酸处理[57]等.Sun等[57]利用1 mol/L盐酸30 s快速处理LLZTO电解质,可以去除其表面Li2CO3,改善金属锂与LLZO的接触[图6(a)],使界面电阻降低至26 Ω·cm2,其对称电池可以在0.2 mA/cm2电流密度下稳定循环700 h. ...
1
... 研究发现LLZO固态电解质会与空气中的二氧化碳和水反应,直接或间接生成碳酸锂,如反应式(1)~(3)所示[53].LLZO表面的碳酸锂不具有亲锂性,因此会显著增大LLZO和金属锂之间的界面阻抗,进而影响固态电池的容量和循环稳定性.消除疏锂的Li2CO3可显著改善LLZO和金属锂的浸润性,降低界面电阻.消除方法包括简单的机械磨除[54]、热处理[55]或气氛热处理[54],中间层反应还原[56]、酸处理[57]等.Sun等[57]利用1 mol/L盐酸30 s快速处理LLZTO电解质,可以去除其表面Li2CO3,改善金属锂与LLZO的接触[图6(a)],使界面电阻降低至26 Ω·cm2,其对称电池可以在0.2 mA/cm2电流密度下稳定循环700 h. ...
1
... 研究发现LLZO固态电解质会与空气中的二氧化碳和水反应,直接或间接生成碳酸锂,如反应式(1)~(3)所示[53].LLZO表面的碳酸锂不具有亲锂性,因此会显著增大LLZO和金属锂之间的界面阻抗,进而影响固态电池的容量和循环稳定性.消除疏锂的Li2CO3可显著改善LLZO和金属锂的浸润性,降低界面电阻.消除方法包括简单的机械磨除[54]、热处理[55]或气氛热处理[54],中间层反应还原[56]、酸处理[57]等.Sun等[57]利用1 mol/L盐酸30 s快速处理LLZTO电解质,可以去除其表面Li2CO3,改善金属锂与LLZO的接触[图6(a)],使界面电阻降低至26 Ω·cm2,其对称电池可以在0.2 mA/cm2电流密度下稳定循环700 h. ...
4
... 研究发现LLZO固态电解质会与空气中的二氧化碳和水反应,直接或间接生成碳酸锂,如反应式(1)~(3)所示[53].LLZO表面的碳酸锂不具有亲锂性,因此会显著增大LLZO和金属锂之间的界面阻抗,进而影响固态电池的容量和循环稳定性.消除疏锂的Li2CO3可显著改善LLZO和金属锂的浸润性,降低界面电阻.消除方法包括简单的机械磨除[54]、热处理[55]或气氛热处理[54],中间层反应还原[56]、酸处理[57]等.Sun等[57]利用1 mol/L盐酸30 s快速处理LLZTO电解质,可以去除其表面Li2CO3,改善金属锂与LLZO的接触[图6(a)],使界面电阻降低至26 Ω·cm2,其对称电池可以在0.2 mA/cm2电流密度下稳定循环700 h. ...
... [57]利用1 mol/L盐酸30 s快速处理LLZTO电解质,可以去除其表面Li2CO3,改善金属锂与LLZO的接触[图6(a)],使界面电阻降低至26 Ω·cm2,其对称电池可以在0.2 mA/cm2电流密度下稳定循环700 h. ...
... [57](a)和半液态锂负极改善负极界面(b)示意图[61]Schematic illustration of LLZTO/Li interface improved by acid treatment[57] (a) and semiliquid lithium metal anode (b)[61]Fig. 63.2.3 调控金属锂
金属锂状态的调控也可以改善其与LLZO固态电解质界面的结合状态,从而减小界面电阻.金属锂的调控策略包括:高温加热[58]、外加机械压力[59]、真空沉积[14]和合金化[60].锂与其他元素合金化,可以调整熔融锂的表面能和黏度,进而改善Li对LLZO固态电解质的润湿性.相比于在LLZO表面引入中间层改善界面电阻的方法,这种金属锂合金化的方法构建的界面更稳定,在长期脱嵌锂循环过程中不会产生新的锂沉积界面;在LLZO表面引入的锂反应活性中间层则有可能在初始嵌锂后体积膨胀,以及在电池循环过程脱嵌锂发生体积变化,产生和LLZO的剥离,从而破坏界面结构,增大界面电阻.Matyjaszewski等[61]制备了一种混合电导聚合物基质中均匀分布微米锂颗粒的半液态锂负极,如图6(b)所示,将电极-电解质从固固转变为液固组成,改善了界面接触,降低了界面电阻,其对称电池在1 mA/cm2电流密度下可稳定循环400 h. ...
... [57] (a) and semiliquid lithium metal anode (b)[61]Fig. 63.2.3 调控金属锂
金属锂状态的调控也可以改善其与LLZO固态电解质界面的结合状态,从而减小界面电阻.金属锂的调控策略包括:高温加热[58]、外加机械压力[59]、真空沉积[14]和合金化[60].锂与其他元素合金化,可以调整熔融锂的表面能和黏度,进而改善Li对LLZO固态电解质的润湿性.相比于在LLZO表面引入中间层改善界面电阻的方法,这种金属锂合金化的方法构建的界面更稳定,在长期脱嵌锂循环过程中不会产生新的锂沉积界面;在LLZO表面引入的锂反应活性中间层则有可能在初始嵌锂后体积膨胀,以及在电池循环过程脱嵌锂发生体积变化,产生和LLZO的剥离,从而破坏界面结构,增大界面电阻.Matyjaszewski等[61]制备了一种混合电导聚合物基质中均匀分布微米锂颗粒的半液态锂负极,如图6(b)所示,将电极-电解质从固固转变为液固组成,改善了界面接触,降低了界面电阻,其对称电池在1 mA/cm2电流密度下可稳定循环400 h. ...
1
... 金属锂状态的调控也可以改善其与LLZO固态电解质界面的结合状态,从而减小界面电阻.金属锂的调控策略包括:高温加热[58]、外加机械压力[59]、真空沉积[14]和合金化[60].锂与其他元素合金化,可以调整熔融锂的表面能和黏度,进而改善Li对LLZO固态电解质的润湿性.相比于在LLZO表面引入中间层改善界面电阻的方法,这种金属锂合金化的方法构建的界面更稳定,在长期脱嵌锂循环过程中不会产生新的锂沉积界面;在LLZO表面引入的锂反应活性中间层则有可能在初始嵌锂后体积膨胀,以及在电池循环过程脱嵌锂发生体积变化,产生和LLZO的剥离,从而破坏界面结构,增大界面电阻.Matyjaszewski等[61]制备了一种混合电导聚合物基质中均匀分布微米锂颗粒的半液态锂负极,如图6(b)所示,将电极-电解质从固固转变为液固组成,改善了界面接触,降低了界面电阻,其对称电池在1 mA/cm2电流密度下可稳定循环400 h. ...
1
... 金属锂状态的调控也可以改善其与LLZO固态电解质界面的结合状态,从而减小界面电阻.金属锂的调控策略包括:高温加热[58]、外加机械压力[59]、真空沉积[14]和合金化[60].锂与其他元素合金化,可以调整熔融锂的表面能和黏度,进而改善Li对LLZO固态电解质的润湿性.相比于在LLZO表面引入中间层改善界面电阻的方法,这种金属锂合金化的方法构建的界面更稳定,在长期脱嵌锂循环过程中不会产生新的锂沉积界面;在LLZO表面引入的锂反应活性中间层则有可能在初始嵌锂后体积膨胀,以及在电池循环过程脱嵌锂发生体积变化,产生和LLZO的剥离,从而破坏界面结构,增大界面电阻.Matyjaszewski等[61]制备了一种混合电导聚合物基质中均匀分布微米锂颗粒的半液态锂负极,如图6(b)所示,将电极-电解质从固固转变为液固组成,改善了界面接触,降低了界面电阻,其对称电池在1 mA/cm2电流密度下可稳定循环400 h. ...
1
... 金属锂状态的调控也可以改善其与LLZO固态电解质界面的结合状态,从而减小界面电阻.金属锂的调控策略包括:高温加热[58]、外加机械压力[59]、真空沉积[14]和合金化[60].锂与其他元素合金化,可以调整熔融锂的表面能和黏度,进而改善Li对LLZO固态电解质的润湿性.相比于在LLZO表面引入中间层改善界面电阻的方法,这种金属锂合金化的方法构建的界面更稳定,在长期脱嵌锂循环过程中不会产生新的锂沉积界面;在LLZO表面引入的锂反应活性中间层则有可能在初始嵌锂后体积膨胀,以及在电池循环过程脱嵌锂发生体积变化,产生和LLZO的剥离,从而破坏界面结构,增大界面电阻.Matyjaszewski等[61]制备了一种混合电导聚合物基质中均匀分布微米锂颗粒的半液态锂负极,如图6(b)所示,将电极-电解质从固固转变为液固组成,改善了界面接触,降低了界面电阻,其对称电池在1 mA/cm2电流密度下可稳定循环400 h. ...
3
... 研究发现LLZO固态电解质会与空气中的二氧化碳和水反应,直接或间接生成碳酸锂,如反应式(1)~(3)所示[53].LLZO表面的碳酸锂不具有亲锂性,因此会显著增大LLZO和金属锂之间的界面阻抗,进而影响固态电池的容量和循环稳定性.消除疏锂的Li2CO3可显著改善LLZO和金属锂的浸润性,降低界面电阻.消除方法包括简单的机械磨除[54]、热处理[55]或气氛热处理[54],中间层反应还原[56]、酸处理[57]等.Sun等[57]利用1 mol/L盐酸30 s快速处理LLZTO电解质,可以去除其表面Li2CO3,改善金属锂与LLZO的接触[图6(a)],使界面电阻降低至26 Ω·cm2,其对称电池可以在0.2 mA/cm2电流密度下稳定循环700 h.
LLZTO表面酸处理改善负极界面[57](a)和半液态锂负极改善负极界面(b)示意图[61]
Schematic illustration of LLZTO/Li interface improved by acid treatment[57] (a) and semiliquid lithium metal anode (b)[61]Fig. 63.2.3 调控金属锂
金属锂状态的调控也可以改善其与LLZO固态电解质界面的结合状态,从而减小界面电阻.金属锂的调控策略包括:高温加热[58]、外加机械压力[59]、真空沉积[14]和合金化[60].锂与其他元素合金化,可以调整熔融锂的表面能和黏度,进而改善Li对LLZO固态电解质的润湿性.相比于在LLZO表面引入中间层改善界面电阻的方法,这种金属锂合金化的方法构建的界面更稳定,在长期脱嵌锂循环过程中不会产生新的锂沉积界面;在LLZO表面引入的锂反应活性中间层则有可能在初始嵌锂后体积膨胀,以及在电池循环过程脱嵌锂发生体积变化,产生和LLZO的剥离,从而破坏界面结构,增大界面电阻.Matyjaszewski等[61]制备了一种混合电导聚合物基质中均匀分布微米锂颗粒的半液态锂负极,如图6(b)所示,将电极-电解质从固固转变为液固组成,改善了界面接触,降低了界面电阻,其对称电池在1 mA/cm2电流密度下可稳定循环400 h. ...
... [61]Fig. 63.2.3 调控金属锂
金属锂状态的调控也可以改善其与LLZO固态电解质界面的结合状态,从而减小界面电阻.金属锂的调控策略包括:高温加热[58]、外加机械压力[59]、真空沉积[14]和合金化[60].锂与其他元素合金化,可以调整熔融锂的表面能和黏度,进而改善Li对LLZO固态电解质的润湿性.相比于在LLZO表面引入中间层改善界面电阻的方法,这种金属锂合金化的方法构建的界面更稳定,在长期脱嵌锂循环过程中不会产生新的锂沉积界面;在LLZO表面引入的锂反应活性中间层则有可能在初始嵌锂后体积膨胀,以及在电池循环过程脱嵌锂发生体积变化,产生和LLZO的剥离,从而破坏界面结构,增大界面电阻.Matyjaszewski等[61]制备了一种混合电导聚合物基质中均匀分布微米锂颗粒的半液态锂负极,如图6(b)所示,将电极-电解质从固固转变为液固组成,改善了界面接触,降低了界面电阻,其对称电池在1 mA/cm2电流密度下可稳定循环400 h. ...
... 金属锂状态的调控也可以改善其与LLZO固态电解质界面的结合状态,从而减小界面电阻.金属锂的调控策略包括:高温加热[58]、外加机械压力[59]、真空沉积[14]和合金化[60].锂与其他元素合金化,可以调整熔融锂的表面能和黏度,进而改善Li对LLZO固态电解质的润湿性.相比于在LLZO表面引入中间层改善界面电阻的方法,这种金属锂合金化的方法构建的界面更稳定,在长期脱嵌锂循环过程中不会产生新的锂沉积界面;在LLZO表面引入的锂反应活性中间层则有可能在初始嵌锂后体积膨胀,以及在电池循环过程脱嵌锂发生体积变化,产生和LLZO的剥离,从而破坏界面结构,增大界面电阻.Matyjaszewski等[61]制备了一种混合电导聚合物基质中均匀分布微米锂颗粒的半液态锂负极,如图6(b)所示,将电极-电解质从固固转变为液固组成,改善了界面接触,降低了界面电阻,其对称电池在1 mA/cm2电流密度下可稳定循环400 h. ...