Compressed- air energy storage (CAES) is considered the most promising large-scale energy storage technology; however, CAES systems are faced with complex operating conditions, including pressure change in the air storage chamber and input/output power changes. Because of the demand for off-design conditions of CAES systems and the limitations of low control accuracy and large pressure loss in the throttle valve decompression regulating the inlet pressure of turbines, a pressure control unit combined with the valve combinations and expansion tank is proposed herein to regulate the inlet pressure of turbines and meet the output power demand. A thermodynamic model of a 10 MW CAES system with thermal storage integrated pressure control unit was established. Then, the variations of important parameters, including pressure, temperature, mass flow rate, and power, with time in the charging and discharging processes were investigated. Furthermore, the mechanism and effect of the pressure control unit combined with the valve combination and expansion tank in regulating the inlet pressure of the turbine were assessed. Compared with the throttle decompression mode, the total exergy destruction of the pressure control unit in the discharge process was reduced by 1.56×108 J, and the energy storage efficiency and density was increased by 0.24% and 0.04 MJ/m3. The pressure control unit can smoothly regulate the inlet pressure of the turbine, which ensures the stable and efficient operation of the CAES system and improves the comprehensive performance of the system.
Keywords:compressed air energy storage system
;
discharge process
;
dynamic control
;
pressure control
;
system performance
LI Yang. Dynamic regulation and control of the discharge process in compressed air energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1514-1523
风能、太阳能等可再生能源的规模化开发和利用是实现“碳中和、碳达峰”目标的重要手段,而储能则是解决可再生能源大规模消纳和稳定输出、提高电力系统效率与安全性的关键技术。现有电力储能技术包括抽水蓄能、压缩空气储能、飞轮储能、锂电池、液流电池、超导磁储能、超级电容器储能等[1]。其中,压缩空气储能(compressed air energy storage,CAES)具有效率高、容量大、存储时间长、成本相对低廉等优点,被认为是最具有发展前景的大规模储能技术[2]。
由于传统CAES存在依赖燃料、效率低、能量密度低等缺点,近年来形成了蓄热式压缩空气储能(compressed air energy storage with thermal storage,TS-CAES)、等温压缩空气储能、液态压缩空气储能、超临界压缩空气储能、水下压缩空气储能、湿空气透平压缩空气储能等多种新型压缩空气储能系统[3]。而TS-CAES具有不消耗化石燃料、流程简单、效率高等优点,受到广泛关注。
FATHIMA A H, PALANISAMY K. Hybrid-renewable energy systems in microgrids: Renewable systems and energy storages for hybrid systems[M]//USA: Elsevier, 2018: 147-164.
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268.
JI L, CHEN H S, ZHANG X J, et al. Development status and application prospects of compressed air energy storage technology[J]. High-Technology & Industrialization, 2018(4): 52-58.
HE W K, CHEN Z X, ZHANG Y, et al. Simulation of load-vessel pressure control for high pressure pneumatic system[J]. Chinese Hydraulics & Pneumatics, 2019(12): 22-27.
LI W, CHEN H S, WANG X, et al. The invention relates to a combined nozzle distribution structure suitable for high pressure expander in CAES system: CN109209524A[P]. [2019-01-15].
LIU J H, WANG X, ZHANG X H, et al. Numerical study on the air distribution characteristics of the turbine regulating stage in a compressed air energy storage system[J]. Energy Storage Science and Technology, 2020, 9(2): 425-434.
ZHOU S H, HE Y, CHEN H S, et al. Performance analysis of a novel adiabatic compressed air energy system with ejectors enhanced charging process[J]. Energy, 2020, 205: doi:10.1016/j.energy.2020.118050.
GUO Z G, DENG G Y, FAN Y C, et al. Performance optimization of adiabatic compressed air energy storage with ejector technology[J]. Applied Thermal Engineering, 2016, 94: 193-197.
WEN X K, LI P, ZHONG J L, et al. The air intake regulation system of turbines of compressed air energy storage system based on jet device[J]. Turbine Technology, 2020, 62(3): 173-175, 208.
文贤馗, 钟晶亮, 卿绍伟, 等. 含射气抽气器配气机构对蓄热式压缩空气储能系统释能功率的影响[J]. 节能技术, 2020, 38(3): 240-246.WEN X K, ZHONG J L, QING S W, et al. Effect of valve train with ejector on the power output of thermal-storage compressed air energy storage system[J]. Energy Conservation Technology, 2020, 38(3): 240-246.
CHEN L X, HU P, ZHAO P P, et al. A novel throttling strategy for adiabatic compressed air energy storage system based on an ejector[J]. Energy Conversion and Management, 2018, 158: 50-59.
HAN Z H, GUO S C. Investigation of discharge characteristics of a tri-generative system based on advanced adiabatic compressed air energy storage[J]. Energy Conversion and Management, 2018, 176: 110-122.
GUO H, XU Y J, ZHANG X J, et al. Off-design performance of compressed air energy storage system with thermal storage[J]. Proceedings of the Chinese Society for Electrical Engineering, 2019, 39(5): 1366-1377.
HE W, WANG J H. Optimal selection of air expansion machine in compressed air energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 87: 77-95.
CHENG Z W. Research on on off-design performance analysis and design optimization of low-temperature adiabatic compressed air energy storage system[D]. Hangzhou: Zhejiang University, 2019.
SCIACOVELLI A, LI Y L, CHEN H S, et al. Dynamic simulation of adiabatic compressed air energy storage (A-CAES) plant with integrated thermal storage-link between components performance and plant performance[J]. Applied Energy, 2017, 185: 16-28.
MOZAYENI H, WANG X L, NEGNEVITSKY M. Dynamic analysis of a low-temperature adiabatic compressed air energy storage system[J]. Journal of Cleaner Production, 2020, 276: doi:10.1016/j.jclepro.2020.124323.
HUANG J J, ZHAO P, WANG P Z, et al. Performance analysis of a high temperature hybrid compressed air energy storage system[J]. Journal of Engineering Thermophysics, 2020, 41(6): 1300-1307.
HE Y, WANG M, CHEN H S, et al. Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation[J]. Energy, 2021, 222: doi:10.1016/j.energy.2021.119978.
CHEN Y, CAI G B, WU Z. Modularization modeling and simulation of turbine test rig main test system[J]. Applied Mathematical Modelling, 2011, 35(11): 5382-5399.
CHEN S, ZHU T, GAN Z X, et al. Optimization of operation strategies for a combined cooling, heating and power system based on adiabatic compressed air energy storage[J]. Journal of Thermal Science, 2020, 29(5): 1135-1148.
LU S G, LIN R M. Gas turbine steady-state design and off-design characteristic general model[J]. Journal of Engineering Thermophysics, 1996(4): 404-407.
... 风能、太阳能等可再生能源的规模化开发和利用是实现“碳中和、碳达峰”目标的重要手段,而储能则是解决可再生能源大规模消纳和稳定输出、提高电力系统效率与安全性的关键技术.现有电力储能技术包括抽水蓄能、压缩空气储能、飞轮储能、锂电池、液流电池、超导磁储能、超级电容器储能等[1].其中,压缩空气储能(compressed air energy storage,CAES)具有效率高、容量大、存储时间长、成本相对低廉等优点,被认为是最具有发展前景的大规模储能技术[2]. ...
1
... 风能、太阳能等可再生能源的规模化开发和利用是实现“碳中和、碳达峰”目标的重要手段,而储能则是解决可再生能源大规模消纳和稳定输出、提高电力系统效率与安全性的关键技术.现有电力储能技术包括抽水蓄能、压缩空气储能、飞轮储能、锂电池、液流电池、超导磁储能、超级电容器储能等[1].其中,压缩空气储能(compressed air energy storage,CAES)具有效率高、容量大、存储时间长、成本相对低廉等优点,被认为是最具有发展前景的大规模储能技术[2]. ...
1
... 由于传统CAES存在依赖燃料、效率低、能量密度低等缺点,近年来形成了蓄热式压缩空气储能(compressed air energy storage with thermal storage,TS-CAES)、等温压缩空气储能、液态压缩空气储能、超临界压缩空气储能、水下压缩空气储能、湿空气透平压缩空气储能等多种新型压缩空气储能系统[3].而TS-CAES具有不消耗化石燃料、流程简单、效率高等优点,受到广泛关注. ...
1
... 由于传统CAES存在依赖燃料、效率低、能量密度低等缺点,近年来形成了蓄热式压缩空气储能(compressed air energy storage with thermal storage,TS-CAES)、等温压缩空气储能、液态压缩空气储能、超临界压缩空气储能、水下压缩空气储能、湿空气透平压缩空气储能等多种新型压缩空气储能系统[3].而TS-CAES具有不消耗化石燃料、流程简单、效率高等优点,受到广泛关注. ...