1.College of Mechanical and Electrical Engineering
2.Engineering Technology Center of Power Integration and Energy Storage System, Qingdao University
3.National and Local Joint Engineering Technology Center for Intelligent Power Integration Technology for Electric Vehicles (Qingdao), Qingdao 266071, Shandong, China
At the moment, there are numerous issues with single inorganic solid electrolytes and polymer solid electrolytes, such as low ionic conductivity, dendrite formation, unstable interfaces, and so on. In varying degrees, composite solid electrolytes formed by organic polymer electrolytes and inorganic electrolytes can improve conductivity, inhibit dendrite formation, improve mechanical strength, interface stability, and compatibility. This paper reviews the improvement direction and measures of composite solid-state electrolytes in improving lithium ion conductivity, inhibiting lithium dendrite, and improving electrochemical stability. In addition, the development direction of the composite solid-state battery is anticipated, which serves as a reference for the development and application of the composite solid-state battery.
Table 2 Enhancement of 6 Li amount in each component after cycling for LLZO (5%)-PEO (LiTFSI), LLZO (20%)-PEO (LiTFSI), LLZO (50%)-PEO (LiTFSI), and LLZO (50%)-PEO (LiTFSI) (50%)-TEGDME
Fig. 3
(a) ionic conductivity of PGMA-LPS and PEMA-LPS with different contents of LPS; (b) EIS of LPS, PGMA-LPS 50% and PEMA-LPS 50%; (c) amplify the spectrum of the green broken line square region in (b)
Fig. 7
Electrochemical stability of electrolyte membrane, (a) LSV curve of composite electrolyte at 25 ℃; (b) impedance spectra of stainless steel |30PEC-70LIMnt-80LIFSi-15FEC-3TFE | Li battery with 4.5 V bias voltage at 25 ℃
ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Advanced Science, 2017, 4(3): doi: 10.1002/advs.201600445.
CHENG Z W, LIU T, ZHAO B, et al. Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Energy Storage Materials, 2021, 34: 388-416.
JIN Y M, LI D, JIA Z G, et al. Organic-inorganic composite electrolytes for all-solid-state lithium batteries[J]. Journal of Atomic and Molecular Physics, 2020, 37(6): 958-973.
YANG D J. Preparation LLZO/PEO composite solid electrolyte and the characteristics of interface with lithium metal[D]. Wuhan: Wuhan University of Technology, 2018.
HUANG Z, YANG J, CHEN X T, et al. Research progress of inorganic solid electrolytes in foundmental and application field[J]. Energy Storage Science and Technology, 2015, 4(1): 1-18.
CHEN L K, HU Y, MA J B, et al. Research progress of solid polymer electrolytes for lithium-ion batteries[J]. Chemical Industry and Engineering, 2020, 37(1): 2-16.
DIRICAN M, YAN C Y, ZHU P, et al. Composite solid electrolytes for all-solid-state lithium batteries[J]. Materials Science and Engineering, 2019, 136: 27-46.
DU A B, CHAI J C, ZHANG J J, et al. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends[J]. Energy Storage Science and Technology, 2016, 5(5): 627-648.
MAUGER A, ARMAND M, JULIEN C M, et al. Challenges and issues facing lithium metal for solid-state rechargeable batteries[J]. Journal of Power Sources, 2017, 353: 333-342.
ZHU X Q, WANG K, XU Y N, et al. Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes[J]. Energy Storage Materials, 2021, 36: 291-308.
LU W Z, XUE M Z, ZHANG C M. Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries[J]. Energy Storage Materials, 2021, 39: 108-129.
ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4113-4120.
CHEN S J, WANG J Y, ZHANG Z H, et al. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries[J]. Journal of Power Sources, 2018, 387: 72-80.
SONG N. Preparation and properties of Li7La3Zr2O12/PEO composite electrolyte membrane for solid-state batteries[D]. Harbin: Harbin Institute of Technology, 2019.
ZAMAN W, HORTANCE N, DIXIT M B, et al. Visualizing percolation and ion transport in hybrid solid electrolytes for Li-metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(41): 23914-23921.
ZHU P H. Preparation of solid polymer composite electrolyte based on PEO and its application in lithium-ion battery[D]. Zhenjiang, China: Jiangsu University, 2019.
ZHANG J X, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454.
LI J, CHEN H W, SHEN Y B, et al. Covalent interfacial coupling for hybrid solid-state Li ion conductor[J]. Energy Storage Materials, 2019, 23: 277-283.
XU X H. Preparation, structure characterization and conductive enhancement mechanism of PEO based composite solid polymer electrolyte[D]. Changsha: Central South University, 2005.
WANG W M, YI E, FICI A J, et al. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles[J]. The Journal of Physical Chemistry C, 2017, 121(5): 2563-2573.
YU X R, MA J, MU C B, et al. Percolation structure design of organic inorganic composite electrolyte with high lithium ion conductivity[J/OL]. Acta Physico-Chimica Sinica, 2022, 38(3): doi: 10.3866/PKU.WHXB201912061.
LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745.
YANG T, ZHENG J, CHENG Q, et al. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: Mechanism of conductivity enhancement and role of doping and morphology[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21773-21780.
WANG H, AN H W, SHAN H M, et al.Research progress of all solid state battery interface[J]. Acta Physico-Chimica Sinica, 2021, 37(11): doi: 10.3866/PKU.WHXB202007070.
ZHOU W, WANG S, LI Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388.
XU L H, LI G B, GUAN J X, et al. Garnet-doped composite polymer electrolyte with high ionic conductivity for dendrite-free lithium batteries[J]. Journal of Energy Storage, 2019, 24: doi: 10.1016/j.est.2019.100767.
LI H Y, LIU W, YANG X D, et al. Fluoroethylene carbonate-Li-ion enabling composite solid-state electrolyte and lithium metal interface self-healing for dendrite-free lithium deposition[J]. Chemical Engineering Journal, 2021, 408: doi: 10.1016/j.cej.2020.127254.
ZHAO C Z, ZHANG X Q, CHENG X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): 11069-11074.
BI Z J, MU S, ZHAO N, et al. Cathode supported solid lithium batteries enabling high energy density and stable cyclability[J]. Energy Storage Materials, 2021, 35: 512-519.
FU K K, GONG Y H, LIU B Y, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 3(4): doi: 10.1126/sciadv.1601659.
JIANG T L, HE P G, WANG G X, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Advanced Energy Materials,2020, 10(12): 1903376.1-1903376.10.
YAN C Y, ZHU P, JIA H, et al. Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries[J]. Energy Storage Materials, 2020, 26: 448-456.
LI D, CHEN L, WANG T S, et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7069-7078.
HOU T Z, YANG G, RAJPUT N N, et al. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation[J]. Nano Energy, 2019, 64: doi: 10.1016/j.nanoen.2019.103881.
CHEN L, LI W X, FAN L Z, et al. Solid-state lithium batteries: Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries[J]. Advanced Functional Materials, 2019, 29(28): doi: 10.1002/adfm.201970196.
WANG Z W, ZHANG P Y, JIA Y Y, et al. Dimethyl carbonate adsorption enabling enhanced overall electrochemical properties for solid composite electrolyte[J]. Journal of Alloys and Compounds, 2021, 853: doi: 10.1016/j.jallcom.2020.157340.