Charging strategy and thermal management technology of power battery in high power charging process of electric vehicle
WU Xiaogang,1, CUI Zhihao1, SUN Yizhao1, ZHANG Kun1, DU Jiuyu,2
1.Engineering Research Center of Automotive Electronics Drive Control and System Integration, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China
2.State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Electric vehicles have become an important way to transform transportation in order to meet the "dual carbon" goal. However, because charging speed has an impact on the user experience of electric vehicles, it limits the promotion and application of electric vehicles to some extent. As a result, the development of high-power charging is a critical technical step toward increasing the penetration rate of electric vehicles. However, the accelerated aging of the power battery caused by high-power charging, as well as the inconsistency of the temperature distribution of the power battery pack caused by rapid heat generation, have introduced new challenges to the formulation of the rapid charging strategy of electric vehicles and the design of the thermal management system. The current research status of management technology for the high-power charging process of electric vehicles is summarized in this paper, based on the optimization of an electric vehicle's high-power charging strategy and the design of a battery thermal management system. The advantages and disadvantages of various charging strategies and thermal management system designs are evaluated with a focus on the impact of high-power charging methods on the performance of power batteries. On this basis, the difficulties in developing a high-power charging strategy and thermal management technology for electric vehicles are thoroughly analyzed.
WU Xiaogang. Charging strategy and thermal management technology of power battery in high power charging process of electric vehicle[J]. Energy Storage Science and Technology, 2021, 10(6): 2218-2234
面向大功率快速充电需求时,充电策略的选择能够通过优化实现电池寿命,充电速度和电池温升的最优解。目前针对电动汽车大功率充电策略可分为多阶段恒流充电策略(multi-stage constant current charging,MSCC),脉冲充电策略(pulse charging,PC),正弦电流充电策略(sinusoidal-ripple-current,SRC)充电策略,Boost-charging策略,基于优化算法的策略,基于电池模型的策略等,其分类如图2所示。
多阶段恒流充电策略如图3所示。其充电协议中,每一个台阶都持续一定的充电时间,直到电池电压/容量达到过渡点,然后跳跃到下一个充电台阶,充电过程转入下一个预置电流。由锂电池的极化约束条件可知,在锂电池充电初期即低荷电状态(state of charge,SOC)区间一般使用高电流,在充电末期即高SOC区间,一般使用低电流。因此,MSCC电流水平是逐级降低的。
Boost-charging最早是由Notten等[37]提出,并在圆柱型(US18500,Sony)和棱柱型(LP423048,Philips)锂离子电池上进行了Boost-charging实验。与1 C CC-CV方案相比,圆柱型电池的充电时间减少了约30%~40%,容量衰减没有明显的加速,对于棱柱形电池,充电时间减少较少,容量衰减率略高。Keil和Jossen[38]采用不同的充电策略对不同类型的18650大功率电池进行比较,在相同的充电时间下,与CC-CV相比,Boost-charging可以明显缩短充电时间,但是容量衰减率有所增加。Boost-charging作为一种新型快速充电策略可以明显缩短充电时间,提高充电效率,并且对循环寿命没有明显的影响。然而,Boost-charging没有考虑充电电流的优化和温度的控制,因此在大功率充电条件下,电池模组产热情况严重,如果不配以合适的热管理系统,可能会引起热失控。
Zhang等[39]利用遗传算法(genetic algorithm,GA)寻找最优的充电电流轨迹,讨论了充电时间和温升的加权系数对电池充电性能的影响,优化后的充电策略与C/3恒流恒压充电相比,充电时间减少了50%,且相应的温升几乎相同。SUN等[40]提出了一种基于多目标粒子群优化的充电策略,采用多目标粒子群优化(multi-object particle swarm optimizer,MOPSO)方法获得帕累托前沿,采用逼近理想解排序(technique for order preference by similarity to an ideal solution,TOPSIS)方法确定最优解,很好地实现了快充模式下极化的锂离子电池充电时间和温度上升的平衡。Xu等[41]基于动态规划(dynamic programming,DP)算法和电化学-热容量衰减耦合模型提出了一种最优的锂离子电池多级快充策略,与恒流充电方案相比,在3300多个充放电周期内,该策略均能降低4.6%的容量衰减率,降低16.3%的温升。Attia等[42]基于机器学习算法提出了一个闭环优化大功率快充策略,使用贝叶斯优化(Bayesian optimization,BO)算法来减少实验次数。经证明该策略大大减少了穷举法所需实验的数量和时间,提高了实验效率,减少了时间成本。然而,可能会存在某些目标函数过于复杂或者不易描述,目标函数最优解求解困难等问题。
在液冷系统的实际应用中,奔驰S400 Blue Hybrid汽车采用了制冷剂的直接冷却方式[69];Tesla电动汽车中的采用了直接液体冷却/加热方式。Tesla Roadster中的电池冷却系统使用1∶1比例的乙二醇/水混合物作为冷却剂[78]。散热接口紧贴在冷却管上,形成电池组下方的底座(图14)来用作散热器,通过与冷却液的热交换来提供有效的冷却。
YU D M, YANG C J, JIANG L J, et al. Review on safety protection of electric vehicle charging[J]. Proceedings of the Chinese Society for Electrical Engineering, 2021, 29(1): 1-16.
LIU Y P, LI X, HAN Y H, et al. Research progress in electrode materials for lithium-ion supercapacitor[J]. High Voltage Engineering, 2018, 44(4): 1140-1148.
CHEN Z Y, XIONG R, LI S J, et al. Extremely fast heating method of the lithium-ion battery at cold climate for electric vehicle[J]. Journal of Mechanical Engineering, 2021, 57(4): 113-120.
SUN F J, WEI L M, ZHANG J W, et al. Research progress and evaluation methods of lithium-ion battery fast-charge graphite anode material[J]. Energy Storage Science and Technology, 2017, 6(6): 1223-1230.
DU J Y, LIU Y, MO X Y, et al. Impact of high-power charging on the durability and safety of lithium batteries used in long-range battery electric vehicles[J]. Applied Energy, 2019, 255: 113793.
YANG X B, ZHENG Y J, GAO W K, et al. Power state estimation of high specific energy storage lithium battery system based on extended equivalent circuit model[J]. Power System Technology, 2021, 45(1): 57-66.
LI C R, XIAO F, FAN Y X, et al. An approach to lithium-ion battery simulation modeling under pulsed high rate condition based on LSTM-RNN[J]. Proceedings of the CSEE, 2020, 40(9): 3031-3042.
AHMED S, BLOOM I, JANSEN A N, et al. Enabling fast charging-a battery technology gap assessment[J]. Journal of Power Sources, 2017, 367: 250-262.
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 电动汽车传导充电用连接装置 第3部分:直流充电接口 GB/T 20234.3—2011[S]. 北京: 中国标准出版社, 2012.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. National Standard (Recommended) of the People's Republic of China: Connection set of conductive charging for electric vehicles—Part 3: DC charging coupler. GB/T 20234.3—2011[S]. Beijing: Standards Press of China, 2012.
SHARMA G, SOOD V K, ALAM M S, et al. Comparison of common DC and AC bus architectures for EV fast charging stations and impact on power quality[J]. eTransportation, 2020, 5: 100066.
MUSSA A S, LIIVAT A, MARZANO F, et al. Fast-charging effects on ageing for energy-optimized automotive LiNi1/3Mn1/3Co1/3O2/graphite prismatic lithium-ion cells[J]. Journal of Power Sources, 2019, 422: 175-184.
DU J Y, MO X Y, LI Y L, et al. Boundaries of high-power charging for long-range battery electric car from the heat generation perspective[J]. Energy, 2019, 182: 211-223.
KHAN A B, CHOI W. Optimal charge pattern for the high-performance multistage constant current charge method for the Li-ion batteries[J]. IEEE Transactions on Energy Conversion, 2018, 33(3): 1132-1140.
LEE C H, CHEN M Y, HSU S H, et al. Implementation of an SOC-based four-stage constant current charger for Li-ion batteries[J]. Journal of Energy Storage, 2018, 18: 528-537.
JIANG L, LI Y, HUANG Y D, et al. Optimization of multi-stage constant current charging pattern based on Taguchi method for Li-ion battery[J]. Applied Energy, 2020, 259: 114148.
LI Y J, LI K N, XIE Y, et al. Optimized charging of lithium-ion battery for electric vehicles: Adaptive multistage constant current-constant voltage charging strategy[J]. Renewable Energy, 2020, 146: 2688-2699.
LIN Q, WANG J, XIONG R, et al. Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries[J]. Energy, 2019, 183: 220-234.
AMANOR-BOADU J M, GUISEPPI-ELIE A, SÁNCHEZ-SINENCIO E. Search for optimal pulse charging parameters for Li-ion polymer batteries using taguchi orthogonal arrays[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8982-8992.
SONG M, CHOE S Y. Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery[J]. Journal of Power Sources, 2019, 436: 226835.
HU S D, LIANG Z P, HE X N. Hybrid sinusoidal-pulse charging method for the Li-ion batteries in electric vehicle applications based on AC impedance analysis[J]. Journal of Power Electronics, 2016, 16(1): 268-276.
CHEN L R, WU S L, SHIEH D T, et al. Sinusoidal-ripple-current charging strategy and optimal charging frequency study for Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 88-97.
NOTTEN P H L, VELD J H G OP HET, VAN BEEK J R G. Boostcharging Li-ion batteries: A challenging new charging concept[J]. Journal of Power Sources, 2005, 145(1): 89-94.
KEIL P, JOSSEN A. Charging protocols for lithium-ion batteries and their impact on cycle life—an experimental study with different 18650 high-power cells[J]. Journal of Energy Storage, 2016, 6: 125-141.
ZHANG C P, JIANG J C, GAO Y, et al. Charging optimization in lithium-ion batteries based on temperature rise and charge time[J]. Applied Energy, 2017, 194: 569-577.
SUN J L, MA Q, LIU R H, et al. A novel multiobjective charging optimization method of power lithium-ion batteries based on charging time and temperature rise[J]. International Journal of Energy Research, 2019, 43(13): 7672-7681.
XU M, WANG R, ZHAO P, et al. Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model[J]. Journal of Power Sources, 2019, 438: 227015.
ATTIA P M, GROVER A, JIN N, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795): 397-402.
GAO Y Z, ZHANG X, CHENG Q Y, et al. Classification and review of the charging strategies for commercial lithium-ion batteries[J]. IEEE Access, 2019, 7: 43511-43524.
OUYANG Q, CHEN J, ZHENG J, et al. Optimal multiobjective charging for lithium-ion battery packs: A hierarchical control approach[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4243-4253.
HU X S, LI S B, PENG H E, et al. Charging time and loss optimization for LiNMC and LiFePO4 batteries based on equivalent circuit models[J]. Journal of Power Sources, 2013, 239: 449-457.
PEREZ H E, HU X S, DEY S, et al. Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 7761-7770.
LIN X K, HAO X G, LIU Z Y, et al. Health conscious fast charging of Li-ion batteries via a single particle model with aging mechanisms[J]. Journal of Power Sources, 2018, 400: 305-316.
STURM J, RHEINFELD A, ZILBERMAN I, et al. Modeling and simulation of inhomogeneities in a 18650 nickel-rich, silicon-graphite lithium-ion cell during fast charging[J]. Journal of Power Sources, 2019, 412: 204-223.
YIN Y L, HU Y, CHOE S Y, et al. New fast charging method of lithium-ion batteries based on a reduced order electrochemical model considering side reaction[J]. Journal of Power Sources, 2019, 423: 367-379.
ZHU X Q, WANG Z P, WANG H, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118.
XIONG Rui, MA Suxiao, CHEN Zeyu, et al. Electrochemical thermal coupling characteristics and modeling for lithium-ion battery operating with extremely self-fast heating[J]. Journal of Mechanical Engineering, 2021, 57(2): 179-189.
MA S, JIANG M D, TAO P, et al. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Progress in Natural Science: Materials International, 2018, 28(6): 653-666.
JAGUEMONT J, BOULON L, DUBÉ Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures[J]. Applied Energy, 2016, 164: 99-114.
ZINTH V, VON LÜDERS C, HOFMANN M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. Journal of Power Sources, 2014, 271: 152-159.
PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery-a low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807.
GUO Y Z, LUO M J, ZOU J, et al. Temperature characteristics of ternary-material lithium-ion battery for vehicle applications[C]// SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016.
CHANG X L, ZHENG L L, WEI S T, et al. Progress in thermal runaway simulation of lithium-ion batteries[J/OL]. Energy Storage Science and Technology, 2021, doi: 10.19799/j.cnki.2095-4239.2021.0191.
WANG L, XIE L Q, ZHANG G, et al. Research progress in the consistency screening of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2): 194-202.
BANDHAUER T M, GARIMELLA S. Passive, internal thermal management system for batteries using microscale liquid-vapor phase change[J]. Applied Thermal Engineering, 2013, 61(2): 756-769.
MAHAMUD R, PARK C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196(13): 5685-5696.
SABBAH R, KIZILEL R, SELMAN J R, et al. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution[J]. Journal of Power Sources, 2008, 182(2): 630-638.
楼英莺. 混合动力车用镍氢电池散热系统研究[D]. 上海: 上海交通大学, 2007.LOU Y Y. Nickel-metal hydride battery cooling system research for hybrid electric vehicle[D]. Shanghai: Shanghai Jiaotong University, 2007.
QIAN Z, LI Y M, RAO Z H. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling[J]. Energy Conversion and Management, 2016, 126: 622-631.
ALAOUI C, SALAMEH Z M. A novel thermal management for electric and hybrid vehicles[J]. IEEE Transactions on Vehicular Technology, 2005, 54(2): 468-476.
SAW L H, TAY A A O, ZHANG L W. Thermal management of lithium-ion battery pack with liquid cooling[C]// 2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). USA. IEEE, 2015: 298-302.
PANCHAL S, KHASOW R, DINCER I, et al. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery[J]. Applied Thermal Engineering, 2017, 122: 80-90.
HO T, KIM Y. Design of direct and indirect liquid cooling systems for high- capacity, high-power lithium-ion battery packs[J]. SAE International Journal of Alternative Powertrains, 2012, 1(2): 525-536.
JARRETT A, KIM I Y. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. Journal of Power Sources, 2014, 245: 644-655.
HUO Y T, RAO Z H, LIU X J, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387-395.
WANG C, ZHANG G Q, MENG L K, et al. Liquid cooling based on thermal silica plate for battery thermal management system[J]. International Journal of Energy Research, 2017, 41(15): 2468-2479.
ZHOU H B, ZHOU F, ZHANG Q, et al. Thermal management of cylindrical lithium-ion battery based on a liquid cooling method with half-helical duct[J]. Applied Thermal Engineering, 2019, 162: 114257.
RUGH J P, PESARAN A, SMITH K. Electric vehicle battery thermal issues and thermal management techniques[R]. National Renewable Energy Laboratory, 2011.
HÉMERY C V, PRA F, ROBIN J F, et al. Experimental performances of a battery thermal management system using a phase change material[J]. Journal of Power Sources, 2014, 270: 349-358.
RAO Z H, WANG S F, ZHANG Y L. Thermal management with phase change material for a power battery under cold temperatures[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(20): 2287-2295.
LING Z Y, WANG F X, FANG X M, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015, 148: 403-409.
RAO Z H, WANG Q C, HUANG C L. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system[J]. Applied Energy, 2016, 164: 659-669.
JAGUEMONT J, OMAR N, VAN DEN BOSSCHE P, et al. Phase-change materials (PCM) for automotive applications: a review[J]. Applied Thermal Engineering, 2018, 132: 308-320.
ZHOU Z C, WEI A B, QU J, et al. Heat transfer characteristics of oscillating heat pipe and its application in power battery cooling[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3916-3925.
JIAO B. Advances in the experimental investigations and applications of flat-plate pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2252-2259,2265.
YE Y H, SHI Y X, SAW L H, et al. Performance assessment and optimization of a heat pipe thermal management system for fast charging lithium ion battery packs[J]. International Journal of Heat and Mass Transfer, 2016, 92: 893-903.
ZHAO R, GU J J, LIU J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries[J]. Journal of Power Sources, 2015, 273: 1089-1097.
WANG Q, JIANG B, XUE Q F, et al. Experimental investigation on EV battery cooling and heating by heat pipes[J]. Applied Thermal Engineering, 2015, 88: 54-60.
... 多阶段恒流充电策略如图3所示.其充电协议中,每一个台阶都持续一定的充电时间,直到电池电压/容量达到过渡点,然后跳跃到下一个充电台阶,充电过程转入下一个预置电流.由锂电池的极化约束条件可知,在锂电池充电初期即低荷电状态(state of charge,SOC)区间一般使用高电流,在充电末期即高SOC区间,一般使用低电流.因此,MSCC电流水平是逐级降低的.
多阶段恒流充电[23]
Chart of multi-stage constant current charging[23]Fig. 3
在多阶段恒流充电策略的研究中,Khan等[23]以充电截止电压为过渡条件提出了一种多级恒流充电法最优充电策略,该策略基于锂离子电池RC模型寻求最优充电模式,相比传统的恒流恒压(constant current-constant voltage,CC-CV)方法,该策略充电时间减少12%,充电效率可以提高0.54%,节能1.8%并且具有较低的温升.Lee等[24]提出了一种基于SOC来控制四阶段恒流充电策略,电池每隔25%的荷电状态间隔按预先设定的电流(1.8、1.3、0.9和0.5 C)充电.与CC-CV相比,该策略充电时间减少22.5%,且温度变化几乎是CC-CV的一半.SOC估计准确性对于决定是否将其转移到下一个充电阶段至关重要,因此,基于SOC区间移动条件下的多级充电方法需要对SOC进行实时准确的估计.以充电截止电压为过渡条件还有许多新型MSCC快充策略,Jiang等[25]基于田口正交矩阵方法提出了一种多阶段恒流充电策略,该策略将充电容量、充电效率和充电时间作为质量函数进行分析,寻求最优充电电流.与传统CC-CV相比,该充电策略在充电容量基本相同的条件下将充电效率提高了2.8%,温升降低了9.3 ℃,充电容量基本相同.Li等[26]根据电池充电时间的帕累托边界曲线提出了一种自适应多级恒流恒压充电(multistage constant current constant voltage,MCCCV)策略,与传统的CC-CV充电策略相比,该策略充电时间减少了37%,容量损耗减少了3.6%. ...
... [23]Fig. 3
在多阶段恒流充电策略的研究中,Khan等[23]以充电截止电压为过渡条件提出了一种多级恒流充电法最优充电策略,该策略基于锂离子电池RC模型寻求最优充电模式,相比传统的恒流恒压(constant current-constant voltage,CC-CV)方法,该策略充电时间减少12%,充电效率可以提高0.54%,节能1.8%并且具有较低的温升.Lee等[24]提出了一种基于SOC来控制四阶段恒流充电策略,电池每隔25%的荷电状态间隔按预先设定的电流(1.8、1.3、0.9和0.5 C)充电.与CC-CV相比,该策略充电时间减少22.5%,且温度变化几乎是CC-CV的一半.SOC估计准确性对于决定是否将其转移到下一个充电阶段至关重要,因此,基于SOC区间移动条件下的多级充电方法需要对SOC进行实时准确的估计.以充电截止电压为过渡条件还有许多新型MSCC快充策略,Jiang等[25]基于田口正交矩阵方法提出了一种多阶段恒流充电策略,该策略将充电容量、充电效率和充电时间作为质量函数进行分析,寻求最优充电电流.与传统CC-CV相比,该充电策略在充电容量基本相同的条件下将充电效率提高了2.8%,温升降低了9.3 ℃,充电容量基本相同.Li等[26]根据电池充电时间的帕累托边界曲线提出了一种自适应多级恒流恒压充电(multistage constant current constant voltage,MCCCV)策略,与传统的CC-CV充电策略相比,该策略充电时间减少了37%,容量损耗减少了3.6%. ...
Boost-charging最早是由Notten等[37]提出,并在圆柱型(US18500,Sony)和棱柱型(LP423048,Philips)锂离子电池上进行了Boost-charging实验.与1 C CC-CV方案相比,圆柱型电池的充电时间减少了约30%~40%,容量衰减没有明显的加速,对于棱柱形电池,充电时间减少较少,容量衰减率略高.Keil和Jossen[38]采用不同的充电策略对不同类型的18650大功率电池进行比较,在相同的充电时间下,与CC-CV相比,Boost-charging可以明显缩短充电时间,但是容量衰减率有所增加.Boost-charging作为一种新型快速充电策略可以明显缩短充电时间,提高充电效率,并且对循环寿命没有明显的影响.然而,Boost-charging没有考虑充电电流的优化和温度的控制,因此在大功率充电条件下,电池模组产热情况严重,如果不配以合适的热管理系统,可能会引起热失控. ...
... [36]Fig. 6
Boost-charging最早是由Notten等[37]提出,并在圆柱型(US18500,Sony)和棱柱型(LP423048,Philips)锂离子电池上进行了Boost-charging实验.与1 C CC-CV方案相比,圆柱型电池的充电时间减少了约30%~40%,容量衰减没有明显的加速,对于棱柱形电池,充电时间减少较少,容量衰减率略高.Keil和Jossen[38]采用不同的充电策略对不同类型的18650大功率电池进行比较,在相同的充电时间下,与CC-CV相比,Boost-charging可以明显缩短充电时间,但是容量衰减率有所增加.Boost-charging作为一种新型快速充电策略可以明显缩短充电时间,提高充电效率,并且对循环寿命没有明显的影响.然而,Boost-charging没有考虑充电电流的优化和温度的控制,因此在大功率充电条件下,电池模组产热情况严重,如果不配以合适的热管理系统,可能会引起热失控. ...
... ③若考虑DC直流分量影响,锂电池性能可能不会有显著改善
[34]
无特定类型
HSPC
BC
[36]
圆柱型(US18500) ...
1
... Boost-charging最早是由Notten等[37]提出,并在圆柱型(US18500,Sony)和棱柱型(LP423048,Philips)锂离子电池上进行了Boost-charging实验.与1 C CC-CV方案相比,圆柱型电池的充电时间减少了约30%~40%,容量衰减没有明显的加速,对于棱柱形电池,充电时间减少较少,容量衰减率略高.Keil和Jossen[38]采用不同的充电策略对不同类型的18650大功率电池进行比较,在相同的充电时间下,与CC-CV相比,Boost-charging可以明显缩短充电时间,但是容量衰减率有所增加.Boost-charging作为一种新型快速充电策略可以明显缩短充电时间,提高充电效率,并且对循环寿命没有明显的影响.然而,Boost-charging没有考虑充电电流的优化和温度的控制,因此在大功率充电条件下,电池模组产热情况严重,如果不配以合适的热管理系统,可能会引起热失控. ...
2
... Boost-charging最早是由Notten等[37]提出,并在圆柱型(US18500,Sony)和棱柱型(LP423048,Philips)锂离子电池上进行了Boost-charging实验.与1 C CC-CV方案相比,圆柱型电池的充电时间减少了约30%~40%,容量衰减没有明显的加速,对于棱柱形电池,充电时间减少较少,容量衰减率略高.Keil和Jossen[38]采用不同的充电策略对不同类型的18650大功率电池进行比较,在相同的充电时间下,与CC-CV相比,Boost-charging可以明显缩短充电时间,但是容量衰减率有所增加.Boost-charging作为一种新型快速充电策略可以明显缩短充电时间,提高充电效率,并且对循环寿命没有明显的影响.然而,Boost-charging没有考虑充电电流的优化和温度的控制,因此在大功率充电条件下,电池模组产热情况严重,如果不配以合适的热管理系统,可能会引起热失控. ...
... ③充电终止条件仅基于电池端电压
[38]
三款不同类型的18650锂电池
ECM
[44]
功率型18650锂离子电池
Rint模型
①电流 ...
1
... Zhang等[39]利用遗传算法(genetic algorithm,GA)寻找最优的充电电流轨迹,讨论了充电时间和温升的加权系数对电池充电性能的影响,优化后的充电策略与C/3恒流恒压充电相比,充电时间减少了50%,且相应的温升几乎相同.SUN等[40]提出了一种基于多目标粒子群优化的充电策略,采用多目标粒子群优化(multi-object particle swarm optimizer,MOPSO)方法获得帕累托前沿,采用逼近理想解排序(technique for order preference by similarity to an ideal solution,TOPSIS)方法确定最优解,很好地实现了快充模式下极化的锂离子电池充电时间和温度上升的平衡.Xu等[41]基于动态规划(dynamic programming,DP)算法和电化学-热容量衰减耦合模型提出了一种最优的锂离子电池多级快充策略,与恒流充电方案相比,在3300多个充放电周期内,该策略均能降低4.6%的容量衰减率,降低16.3%的温升.Attia等[42]基于机器学习算法提出了一个闭环优化大功率快充策略,使用贝叶斯优化(Bayesian optimization,BO)算法来减少实验次数.经证明该策略大大减少了穷举法所需实验的数量和时间,提高了实验效率,减少了时间成本.然而,可能会存在某些目标函数过于复杂或者不易描述,目标函数最优解求解困难等问题. ...
1
... Zhang等[39]利用遗传算法(genetic algorithm,GA)寻找最优的充电电流轨迹,讨论了充电时间和温升的加权系数对电池充电性能的影响,优化后的充电策略与C/3恒流恒压充电相比,充电时间减少了50%,且相应的温升几乎相同.SUN等[40]提出了一种基于多目标粒子群优化的充电策略,采用多目标粒子群优化(multi-object particle swarm optimizer,MOPSO)方法获得帕累托前沿,采用逼近理想解排序(technique for order preference by similarity to an ideal solution,TOPSIS)方法确定最优解,很好地实现了快充模式下极化的锂离子电池充电时间和温度上升的平衡.Xu等[41]基于动态规划(dynamic programming,DP)算法和电化学-热容量衰减耦合模型提出了一种最优的锂离子电池多级快充策略,与恒流充电方案相比,在3300多个充放电周期内,该策略均能降低4.6%的容量衰减率,降低16.3%的温升.Attia等[42]基于机器学习算法提出了一个闭环优化大功率快充策略,使用贝叶斯优化(Bayesian optimization,BO)算法来减少实验次数.经证明该策略大大减少了穷举法所需实验的数量和时间,提高了实验效率,减少了时间成本.然而,可能会存在某些目标函数过于复杂或者不易描述,目标函数最优解求解困难等问题. ...
1
... Zhang等[39]利用遗传算法(genetic algorithm,GA)寻找最优的充电电流轨迹,讨论了充电时间和温升的加权系数对电池充电性能的影响,优化后的充电策略与C/3恒流恒压充电相比,充电时间减少了50%,且相应的温升几乎相同.SUN等[40]提出了一种基于多目标粒子群优化的充电策略,采用多目标粒子群优化(multi-object particle swarm optimizer,MOPSO)方法获得帕累托前沿,采用逼近理想解排序(technique for order preference by similarity to an ideal solution,TOPSIS)方法确定最优解,很好地实现了快充模式下极化的锂离子电池充电时间和温度上升的平衡.Xu等[41]基于动态规划(dynamic programming,DP)算法和电化学-热容量衰减耦合模型提出了一种最优的锂离子电池多级快充策略,与恒流充电方案相比,在3300多个充放电周期内,该策略均能降低4.6%的容量衰减率,降低16.3%的温升.Attia等[42]基于机器学习算法提出了一个闭环优化大功率快充策略,使用贝叶斯优化(Bayesian optimization,BO)算法来减少实验次数.经证明该策略大大减少了穷举法所需实验的数量和时间,提高了实验效率,减少了时间成本.然而,可能会存在某些目标函数过于复杂或者不易描述,目标函数最优解求解困难等问题. ...
1
... Zhang等[39]利用遗传算法(genetic algorithm,GA)寻找最优的充电电流轨迹,讨论了充电时间和温升的加权系数对电池充电性能的影响,优化后的充电策略与C/3恒流恒压充电相比,充电时间减少了50%,且相应的温升几乎相同.SUN等[40]提出了一种基于多目标粒子群优化的充电策略,采用多目标粒子群优化(multi-object particle swarm optimizer,MOPSO)方法获得帕累托前沿,采用逼近理想解排序(technique for order preference by similarity to an ideal solution,TOPSIS)方法确定最优解,很好地实现了快充模式下极化的锂离子电池充电时间和温度上升的平衡.Xu等[41]基于动态规划(dynamic programming,DP)算法和电化学-热容量衰减耦合模型提出了一种最优的锂离子电池多级快充策略,与恒流充电方案相比,在3300多个充放电周期内,该策略均能降低4.6%的容量衰减率,降低16.3%的温升.Attia等[42]基于机器学习算法提出了一个闭环优化大功率快充策略,使用贝叶斯优化(Bayesian optimization,BO)算法来减少实验次数.经证明该策略大大减少了穷举法所需实验的数量和时间,提高了实验效率,减少了时间成本.然而,可能会存在某些目标函数过于复杂或者不易描述,目标函数最优解求解困难等问题. ...
... 在液冷系统的实际应用中,奔驰S400 Blue Hybrid汽车采用了制冷剂的直接冷却方式[69];Tesla电动汽车中的采用了直接液体冷却/加热方式.Tesla Roadster中的电池冷却系统使用1∶1比例的乙二醇/水混合物作为冷却剂[78].散热接口紧贴在冷却管上,形成电池组下方的底座(图14)来用作散热器,通过与冷却液的热交换来提供有效的冷却.
特斯拉跑车电池冷却[74]
Tesla Roadster battery cooling[74]Fig. 142.3 相变材料冷却
在液冷系统的实际应用中,奔驰S400 Blue Hybrid汽车采用了制冷剂的直接冷却方式[69];Tesla电动汽车中的采用了直接液体冷却/加热方式.Tesla Roadster中的电池冷却系统使用1∶1比例的乙二醇/水混合物作为冷却剂[78].散热接口紧贴在冷却管上,形成电池组下方的底座(图14)来用作散热器,通过与冷却液的热交换来提供有效的冷却. ...
... [75]Fig. 13
在液冷系统的实际应用中,奔驰S400 Blue Hybrid汽车采用了制冷剂的直接冷却方式[69];Tesla电动汽车中的采用了直接液体冷却/加热方式.Tesla Roadster中的电池冷却系统使用1∶1比例的乙二醇/水混合物作为冷却剂[78].散热接口紧贴在冷却管上,形成电池组下方的底座(图14)来用作散热器,通过与冷却液的热交换来提供有效的冷却. ...