基于数理统计方法的锂电池电解液电导率优化设计
Statistics method-based optimization of electrolyte conductivity of lithium-ion battery
通讯作者: 李骏,博士,高级工程师,主要研究方向为电解液添加剂合成与精制、锂离子电池电解液设计,E-mail:lijun.sshy@sinopec.com。
收稿日期: 2022-02-10 修回日期: 2022-03-15
Received: 2022-02-10 Revised: 2022-03-15
作者简介 About authors
周思飞(1993—),女,硕士研究生,主要研究方向为锂离子电池电解液,E-mail:
离子电导率是评估锂离子电池电解液性能的重要特征参数,直接影响着电池的低温、倍率等性能,在电解液的设计中极具指导价值。传统的电解液研发模式主要基于经验和实验的“试错法”,存在变量多、实验成本高、开发周期长等问题。针对以上问题,本工作提出了一种结合空间填充混料设计与高斯过程回归的电导率优化设计方法,以包括环状碳酸酯(EC)及不同种类线性碳酸酯、羧酸酯的电解液溶剂组成作为模型的输入,电导率作为模型的输出,并运用最大似然估计求解超参数;通过后续实验验证了模型的有效性,并可预测满足任意电导率要求的电解液溶剂配方。
关键词:
Ionic conductivity is an important parameter in the evaluation of lithium-ion battery electrolyte performance. Ionic conductivity affects the low temperature and rate capability of the battery and provides guiding principles for electrolyte design. Traditional research and development methodologies are primarily based on trial and error, which involves many variables. This results in high experimental costs and a long discovery cycle. To solve the above issues, a conductivity optimization design method that combines a space filling mixture design and Gaussian process regression is proposed in this paper. According to the formulation parameters of the electrolyte, including different types of cyclic carbonate (ethylene carbonate), linear carbonates, and carboxylic acids as the model's input, the ionic conductivity is output by the model, and the maximum likelihood estimation is employed to solve the super parameters. The effectiveness and precision of the proposed model were verified in subsequent experiments, and we found that an electrolyte solvent recipe that satisfies any conductivity requirements can be predicted.
Keywords:
本文引用格式
周思飞, 李骏, 张道明, 薛浩亮, 王小飞.
ZHOU Sifei.
电解液被称为“锂电池的血液”,其作用是在正负极间传输锂离子,对电池的能量密度、循环寿命、安全性能、高低温性能有直接影响。电解液的重要指标之一是电导率,测量电导率随温度和导电盐浓度的变化有助于确定存储设备的极限工作条件(例如,最高、最低工作温度,最大充电速率)[1]。而极限工作条件的研究对快充技术、深空探测、极地、航天技术等特殊应用场景具有重要意义。
基于此,本工作以环状碳酸酯(EC)及不同种类线性碳酸酯、羧酸酯等常见的电解液溶剂体系为研究对象,按照空间填充混料设计得到的电解液溶剂组成配制电解液进行电导率的测试,以高斯过程回归对数据进行分析处理,得到预测电导率的数学模型,并对其进行有效性的评价。
1 实验材料和方法
1.1 分析测试仪器
电解液样品分别在-10 ℃、25 ℃和45 ℃下手套箱中恒温静置4 h再用雷磁电导率仪(DDBJ-350F)测试离子电导率。工作电极为铂电极,电极常数为1。
1.2 电解液配制
在充满氩气气氛的手套箱中将溶剂碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、乙酸乙酯(EA)、丙酸乙酯(EP)、丙酸甲酯(MP)按照实验设计要求的质量比配成混合溶剂,然后将锂盐六氟磷酸锂LiPF6溶解于上述溶液中配制成1 mol/kg LiPF6电解液。手套箱中水、氧含量均控制在0.00001%以下。
2 实验设计
2.1 混料设计
混料设计保证了指定变量比例之和等于1。本设计中存在3组混料设计。行业设计经验可确定环状碳酸酯、线性碳酸酯与羧酸酯的组成区间,将其质量分数分别设置为0.1~0.3、0.2~0.6以及0.1~0.4。电解液中常用的环状碳酸酯包括碳酸乙烯酯(EC)和碳酸丙烯酯(PC),然而PC对天然石墨的结构有一定的破坏作用,在石墨类电极中用量通常较低。考虑到更广泛的适用性,在本工作中环状碳酸酯只选择EC作为研究对象。因此,第一组混料设计是存在着线性约束的混料设计;第二组混料设计是3种线性碳酸酯EMC、DMC、DEC的组合;第三组混料设计是3种线性碳酸酯EA、MP、EP的组合。各溶剂在质量分数上满足如下关系:
2.2 空间填充设计
空间填充设计的算法最初会在指定设计区域内生成大量随机点,随后使用快速Ward算法将这些点聚类到个数与指定的试验次数相同的聚类中[17]。使用MaxPro(最大投影)最优性准则来获取最终设计点,对于p个变量以及n次试验则有:
式中,
2.3 空间填充混料设计
图1
图1
空间填充混料设计的质量分数三元图
Fig. 1
Mass fraction ternary plots of space filling mixture designs
3 数据处理与分析
3.1 高斯过程回归模型
为了表达上的简洁,通过数据预处理使均值函数为0。考虑模型
式中,
其中:
式中,
对于
3.2 模型结果分析
表1 空间填充混料设计溶剂组成
Table 1
环状碳酸酯(EC) | 线性碳酸酯 | 羧酸酯 | EMC | DEC | DMC | EA | MP | EP |
---|---|---|---|---|---|---|---|---|
0.269 | 0.550 | 0.181 | 0.043 | 0.953 | 0.004 | 0.189 | 0.202 | 0.609 |
0.129 | 0.529 | 0.342 | 0.140 | 0.275 | 0.585 | 0.012 | 0.088 | 0.900 |
0.279 | 0.422 | 0.299 | 0.372 | 0.416 | 0.212 | 0.470 | 0.015 | 0.515 |
0.166 | 0.507 | 0.327 | 0.985 | 0.013 | 0.002 | 0.847 | 0.062 | 0.091 |
0.297 | 0.305 | 0.398 | 0.022 | 0.323 | 0.655 | 0.609 | 0.355 | 0.036 |
0.156 | 0.600 | 0.244 | 0.114 | 0.819 | 0.067 | 0.540 | 0.439 | 0.021 |
0.118 | 0.589 | 0.293 | 0.560 | 0.039 | 0.401 | 0.260 | 0.349 | 0.391 |
0.278 | 0.566 | 0.156 | 0.193 | 0.017 | 0.790 | 0.048 | 0.899 | 0.053 |
0.248 | 0.360 | 0.392 | 0.785 | 0.188 | 0.027 | 0.082 | 0.684 | 0.234 |
0.211 | 0.479 | 0.310 | 0.018 | 0.728 | 0.254 | 0.001 | 0.830 | 0.169 |
图2
图2
实验点电导率实测值与预测值
Fig. 2
Actual by predicted plot for conductivity of experiments
图3为电导率的变量影响图,可以直观看出每个模型输入变量在不同温度下对电导率的影响,着色带代表95%置信区间。只有在同一组混料设计中的变量才能进行影响的比较,即不能将不属于同一混料设计的EMC和EA进行影响的比较。
图3
在第一组混料设计中,环状碳酸酯(EC)和羧酸酯在研究范围内含量增大对电导率都有正效应,但不同温度下两者的正效应大小不同。在温度为-10 ℃时,羧酸酯的正效应大于环状碳酸酯(EC);在温度为25 ℃和45 ℃时,环状碳酸酯(EC)的正效应显著大于羧酸酯。且随着温度的升高,环状碳酸酯(EC)的正效应是增大的,而羧酸酯的正效应是减小的。对于线性碳酸酯,在3个温度下,研究范围内含量增大对电导率都有负效应。
在第二组线性碳酸酯的混料设计中,3个温度下只有DMC在研究范围内含量增大对电导率有正效应,而EMC和DEC研究范围内含量增大对电导率都有负效应。
在第三组羧酸酯的混料设计中,3个温度下EA和MP在研究范围内含量增大都对电导率有正效应;在温度为-10 ℃和25 ℃时,MP的正效应大于EA;在温度为45 ℃时,两者的正效应大致相同,总的来说MP对电导率的提升效果略优于EA,而EA则优于对电导率有负效应的EP。
由以上分析可知电解液溶剂变量众多且影响复杂,难以直接观察到3个温度下电导率均最大的最优电导率设计。可以将-10 ℃、25 ℃、45 ℃电导率按照指定权重加和后得到总的电导率函数,对总电导率函数归一化处理使算法收敛加快,进而求解使归一化后总电导率函数最大的各变量的值。本工作将3个温度下电导率权重均设为1,最终得到最优电导率设计的溶剂组成为:环状碳酸酯(EC):0.3、线性碳酸酯:0.3、羧酸酯:0.4;EMC:0、DEC:0、DMC:1;EA:0、MP:1、EP:0,即EC:0.3、DMC:0.3、MP:0.4。如表2所示,实验结果证明了最优电导率设计的预测较为准确。
表2 最佳电导率设计的模型性能
Table 2
温度/℃ | 预测值/(ms/cm) | 实测值/(ms/cm) | 模型误差/(ms/cm) |
---|---|---|---|
-10 | 10.06 | 10.43 | -0.37 |
25 | 14.87 | 14.42 | 0.45 |
45 | 17.31 | 16.95 | 0.36 |
在实际应用中电导率的优化只是电解液设计的初步筛选环节,电解液的设计通常需要合适的电导率区间。具体而言,依据给定各温度电导率的范围初步筛选满足条件的电解液溶剂配方。本工作通过蒙特卡洛模拟实现这一初步筛选。蒙特卡洛方法,又称随机抽样或统计试验方法,通过将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。蒙特卡洛模拟包括4个基本步骤:①基于要预测的因变量和驱动预测的自变量建立预测模型;②指定自变量的概率分布;③设置合理的模拟次数;④生成自变量的随机值,基于模型进行计算模拟。
在本工作中高斯过程回归模型已经建立,自变量区间范围与混料设计中一致,将其设置为随机均匀分布,模拟次数为3000,即可模拟计算生成自变量的随机值所对应的不同温度下的电导率预测值[20]。
为了简化展示电导率的蒙特卡洛模拟结果,将归一化后总电导率函数标记为不同的颜色等级,以3组混料设计的变量分别作出三元图,如图4所示。
图4
由图4可以直观看出羧酸含量增大,环状碳酸酯(EC)、线性碳酸酯减小有利于总电导率函数增大,线性碳酸酯中使用DMC能优化总电导率;而羧酸酯中应优先选择MP和EA。
从模拟结果中随机抽取了4个样本,样本的溶剂组成如表3所示,选择的样本组成有较大差异,具有代表性。
表3 模拟结果抽取样本的溶剂质量分数组成
Table 3
模拟结果抽取样本 | 环状碳酸酯(EC) | 线性碳酸酯 | 羧酸酯 | EMC | DEC | DMC | EA | MP | EP |
---|---|---|---|---|---|---|---|---|---|
1 | 0.291 | 0.344 | 0.365 | 0.163 | 0.071 | 0.766 | 0.177 | 0.519 | 0.304 |
2 | 0.137 | 0.533 | 0.330 | 0.052 | 0.283 | 0.665 | 0.509 | 0.023 | 0.468 |
3 | 0.232 | 0.585 | 0.183 | 0.062 | 0.083 | 0.855 | 0.263 | 0.370 | 0.367 |
4 | 0.175 | 0.558 | 0.267 | 0.853 | 0.144 | 0.003 | 0.190 | 0.237 | 0.573 |
如图5所示,样本-10 ℃、25 ℃、45 ℃的电导率实验误差均在±0.8 ms/cm之内,且预测的样本电导率大小顺序与实验结果一致,这保证了模拟结果的有效性。
图5
4 结论
结合空间填充混料设计与高斯过程回归提出了一种锂离子电池电解液电导率建模及优化的方法。电解液的溶剂组成,包括环状碳酸酯(EC)及不同种类线性碳酸酯、羧酸酯作为模型的输入,使用具备预测不确定性的高斯过程方法作为回归模型预测电导率,只需少量的实验即可实现给定范围溶剂组分的电导率预测以及最优化电导率设计。其中电导率预测的误差在±0.8 ms/cm之内,且预测的样本电导率大小顺序与实验结果一致,最优化电导率优化设计的误差在±0.45 ms/cm之内。
参考文献
/
〈 |
|
〉 |
