Research progress of energy storage technology in China in 2021
CHEN Haisheng,1, LI Hong,2, MA Wentao3, XU Yujie,1, WANG Zhifeng,4, CHEN Man,5, HU Dongxu,1,6, LI Xianfeng,7, TANG Xisheng,4, HU Yongsheng,2, MA Yanwei,4, JIANG Kai,8, QIAN Hao,9, WANG Qingsong,10, WANG Liang1, ZHANG Xinjing1, WANG Xing1, XU Dehou11, ZHOU Xuezhi1, LIU Wei12, WU Xianzhang13, WANG Donglin14, HE Qinggang15, MA Zifeng16, LU Yaxiang2, ZHANG Xuesong4, LI Quan2, SUO Liumin2, GUO Huan1, YU Zhenhua12, MEI Wenxin10, QIN Peng10
1.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
2.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3.Burea of Major R&D Programs Chinese Academy of Scicences, Beijing 100864, China
4.Institute of Electrical Engineering Chinese Academy of Sciences, Beijing 100190, China
5.China Southern Power Grid, Guangzhou 510623, Guangdong, China
6.Chinese Academy of Sciences, Beijing 100049, China
7.Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
8.Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
9.Beijing Hyper Strong Technology Co. Ltd. , Beijing 10094, China
10.State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
11.National Energy Large Scale Physical Energy Storage Technologies R&D Center of Bijie High-tech Industrial Development Zone, Bijie 551712, Guizhou, China
12.CNESA, Beijing 100190, China
13.Zhejiang Narada Co. Ltd. , Lin'an 310030, Zhejiang, China
14.Sungrow Co. Ltd. , Hefei 230088, Anhui, China
15.College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
16.Shanghai Jiao Tong University, Shanghai 200240, China
Research and development progress on energy storage technologies of China in 2021 is reviewed in this paper. By reviewing and analyzing three aspects of research and development including fundamental study, technical research, integration and demonstration, the progress on major energy storage technologies is summarized including hydro pumped energy storage, compressed air energy storage, flywheel, lead battery, lithium-ion battery, flow battery, sodium-ion battery, supercapacitor, new technologies, integration technology, fire-control and safety technology. The results indicate that extensive improvements of China's energy storage technologies have been achieved during 2021 in terms of all the three aspects. China is now the most active country in energy storage fundamental study and also one of the core countries of technical research and demonstration.
图1给出了依据“Web of Science”核心数据库,以“Energy Storage”为主题词统计的2021年度中国机构和学者关于储能技术发表的SCI论文数。从图中可以看出,2021年,中国机构和学者共发表SCI论文11949篇,其中锂离子电池、储热(包括储冷)、超级电容器、钠离子电池的SCI论文数超过1000篇,为当前我国储能领域基础研究的热门方向。总体上化学储能的SCI论文数明显高于物理储能。这主要是关于储能材料的发表论文数非常高,达到4581篇,化学储能的材料研究明显比物理储能活跃;同时,锂离子电池、储热、超级电容器、钠离子电池这四种储能技术的材料研究也最为活跃。
Fig. 1
Number of SCI papers on major energy storage technologies published from China in 2021
图2给出了依据“Web of Science”核心数据库,以“Energy Storage”为主题词统计的2021年度世界主要国家关于储能技术发表的SCI论文数。从图中可以看出,2021年,全世界共发表储能技术相关SCI论文26510篇,其中中国、美国、印度、韩国、德国、英国和澳大利亚7个国家发表的论文数超过1000篇。中国机构和学者共发表SCI论文11949篇,居世界第一位,遥遥领先于第二位美国的3336篇和第三位印度的2420篇,且超过了第二到第七位发表论文的总和,中国已经成为全球储能技术基础研究最活跃的国家。综合分析当今世界储能技术基础研究先进国家的格局,基本上包含两类国家:一类是美国、德国、英国和澳大利亚为代表的西方发达国家;第二类为中国、印度和韩国为代表的新兴国家。在分项技术方面,在图1所列出的所有单项技术,包括抽水蓄能、压缩空气、储热、飞轮、铅电池、锂离子电池、钠离子电池、液流电池、超级电容器、液态金属、金属离子电池和水系电池,中国机构和学者在2021年发表的SCI论文数均居世界第一。
Fig. 2
Number of SCI papers on energy storage technologies published from major countries worldwide in 2021
图3给出了依据“Web of Science”核心数据库,以“Energy Storage”为主题词统计的2010—2021年世界主要国家关于储能技术发表的SCI论文数。根据统计结果,2010年以来全世界共发表储能技术相关SCI论文184248篇,其中中国、美国、印度、韩国、德国、英国、澳大利亚、意大利、日本和法国位列前10位,且这十个国家2010年以来发表的储能相关SCI论文数均超过6000篇。从发展趋势看,一方面,相比2010年,所有10个国家发表的储能相关SCI论文数均大幅增加。比如美国从2010年的1223篇增加到2021年的3336篇,中国从2010年的684篇增加到2021年的11949篇。另一方面,这10个主要国家可以分为两类:一类是美国、德国、英国、澳大利亚、意大利、日本和法国7个发达国家,它们的储能相关SCI论文数大致经历了两个时期,即从2010—2016年的快速增长期和2017年开始的基本稳定期;第二类为中国、印度和韩国这三个新兴国家,它们的储能相关SCI论文数自2010年以来一直在增长,目前仍保持明显的上升趋势。第三方面,比较中美两国的储能相关SCI论文数可以看出,2010年中国的SCI论文数只有美国的50%左右,但到2013以后中国已超过美国成为全球储能相关SCI论文数的第一大国,特别是2017年以后美国每年的储能相关SCI论文数基本稳定在3500篇左右,而中国同期每年发表的储能SCI论文数仍然在大幅增长,从2017年的7074篇增加到2021年11949篇,这同中国政府和企业在“十二五”和“十三五”期间加大对储能技术研发支持力度的情况是完全吻合的。
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485.
LI X F, ZHANG H Z, ZHENG Q, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449.
GONG G X, LV J L, JIANG X J, et al. Grid-connection control of doubly fed variable speed pumped storage unit[C]//2021 5th International Conference on Green Energy and Applications (ICGEA), 2021, Singapore, IEEE, 2021: 52-57.
GONG G, LYU J, JIANG X, et al. Operation control of doubly fed adjustable speed pumped storage unit for primary frequency modulation[J]. Energy Storage Science and Technology, 2020, 9(6): 1878-1884.
CHEN Y H, DENG C H, WU H Y, et al. Multi-stage soft coordinated control of variable speed pumped storage unit in the process of mode conversion under the generation condition[J]. Proceedings of the CSEE, 2021, 41(15): 5258-5274.
CHEN Y H, DENG C H, ZHAO Y T. Coordination control between excitation and hydraulic system during mode conversion of variable speed pumped storage unit[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10171-10185.
ZHAO Z, YANG J, DONG X, et al. No-load characteristics and variable speed evolution of doubly-fed pumped storage unit based on dynamic experiment platform[J]. Proceedings of the CSEE, 2022, doi:10.13334/j.0258-8013.pcsee.211674.
YAO W W, DENG C H, LI D L, et al. Optimal sizing of seawater pumped storage plant with variable-speed units considering offshore wind power accommodation[J]. Sustainability, 2019, 11(7): doi: 10.3390/su11071939.
YANG S, ZHANG Q, GAO L A. Optimal operation of wind-light-pumped storage combined power generation system[J]. Journal of Hebei University (Natural Science Edition), 2021, 41(1): 106-112.
XU B B, LI H H, CAMPANA P E, et al. Dynamic regulation reliability of a pumped-storage power generating system: Effects of wind power injection[J]. Energy Conversion and Management, 2020, 222: doi: 10.1016/j.enconman.2020.113226.
WANG J, LIAO Y W, HAN W F, et al. Modeling and active power control characteristics of pumped storage-wind hybrid power system in the context of peak carbon dioxide emission[J]. Water Resources and Hydropower Engineering, 2021, 52(9): 172-181.
TAO R, WANG Z W. Comparative numerical studies for the flow energy dissipation features in a pump-turbine in pump mode and turbine mode[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102835.
ZHANG X X, CHENG Y G, YANG Z Y, et al. Water column separation in pump-turbine after load rejection: 1D-3D coupled simulation of a model pumped-storage system[J]. Renewable Energy, 2021, 163: 685-697.
GAO C Y, YU X Y, NAN H P, et al. A fast high-precision model of the doubly-fed pumped storage unit[J]. Journal of Electrical Engineering & Technology, 2021, 16(2): 797-808.
ZHANG J F, LAI L Q, CHEN S B, et al. Multi-objective optimization of pump turbine based on improved partical swarm optimization algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(3): 86-92.
ZHANG Q H, YANG K, WANG S H, et al. Construction and utilization of pumped storage power station based on subsidence area-underground chamber group of closing coal mine[J]. Water Resources and Power, 2021, 39(3): 91-94.
BIAN Z F, ZHOU Y J, ZENG C L, et al. Discussion of the basic problems for the construction of underground pumped storage reservoir in abandoned coal mines[J]. Journal of China Coal Society, 2021, 46(10): 3308-3318.
SHANG D C, PEI P. Analysis of influencing factors of modification potential of abandoned coal mine into pumped storage power station[J]. Journal of Energy Resources Technology, 2021, 143(11): 1-34.
ZHAO H J, JIN Y D, LIU S B. Study on calculation method of maximum ice thickness of pumped-storage power station reservoir in cold region[J]. Water Power, 2021, 47(7): 30-32, 65.
GUO H, XU Y J, ZHANG X H, et al. Dynamic characteristics and control of supercritical compressed air energy storage systems[J]. Applied Energy, 2021, 283: doi: 10.1016/apenergy.2021.116294.
CHEN L X, WANG Y Z, XIE M N, et al. Energy and exergy analysis of two modified adiabatic compressed air energy storage (A-CAES) system for cogeneration of power and cooling on the base of volatile fluid[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.103009.
DZIDO A, KRAWCZYK P, WOŁOWICZ M, et al. Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications[J]. Renewable Energy, 2022, 184: 727-739.
GUO H, XU Y J, ZHU Y L, et al. Coupling properties of thermodynamics and economics of underwater compressed air energy storage systems with flexible heat exchanger model[J]. Journal of Energy Storage, 2021, 43: doi: 10.1016/j.est.2021.103198.
CHEN H, PENG Y H, WANG Y L, et al. Thermodynamic analysis of an open type isothermal compressed air energy storage system based on hydraulic pump/turbine and spray cooling[J]. Energy Conversion and Management, 2020, 204: doi: 10.1016/j.econman.2020.112293.
MUCCI S, BISCHI A, BRIOLA S, et al. Small-scale adiabatic compressed air energy storage: Control strategy analysis via dynamic modelling[J]. Energy Conversion and Management, 2021, 243: doi: 10.1016/j.econman.2021.114358.
LI J, MAO Y, YANG L X.Temperature distribution and heat saturating time of regenerative heat transfer[J]. Journal of Thermal Science, 2006, 15(2): 175-180.
ZHANG D, ZUO Z T, ZHOU X, et al. Coupling relationship of compound lean parameters of transonic axial compressor[J]. Energy Storage Science and Technology, 2021, 10(5): 1544-1555.
SUN J T, HOU H C, ZUO Z T, et al. Numerical study on wet compression in a supercritical air centrifugal compressor[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2020, 234(3): 384-397.
SUN J T, ZHOU X, LIANG Q, et al. The effect of wet compression on a centrifugal compressor for a compressed air energy storage system[J]. Energies, 2019, 12(5): doi: 10.3390/en12050906.
MENG C, ZUO Z T, GUO W B, et al. Research on regulation law of inlet guide vane in high-pressure centrifugal compressor of CAES[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2834-2840.
GUO W B, ZUO Z T, SUN J T, et al. Experimental investigation on off-design performance and adjustment strategies of the centrifugal compressor in compressed air energy storage system[J]. Journal of Energy Storage, 2021, 38: doi: 10.1016/j.est.2021.102515.
WANG X, LI W, ZHANG X H, et al. Flow characteristic of a multistage radial turbine for supercritical compressed air energy storage system[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, 232(6): 622-640.
SUN G K, LI W, ZHANG X H, et al. Aerodynamic performance and losses mechanism of radial turbine intake components[J]. Journal of Aerospace Power, 2015, 30(8): 1926-1935.
SUN G K, LI W, ZHANG X H, et al. Study on the effect of variation of the volute cross-sectional dimension on radial turbine performance[J]. Science Technology and Engineering, 2014, 14(26): 72-80, 91.
SHAO Z Y, LI W, WANG X, et al. Analysis of shroud cavity leakage in a radial turbine for optimal operation in compressed air energy storage system[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(7): doi: 10.1115/1.4047280.
LI W, WANG X, ZHANG X H, et al. Experimental and numerical investigations of closed radial inflow turbine with labyrinth seals[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(10): doi: 10.1115/1.4039804.
WANG X, ZHU Y L, ZHANG X H, et al. Effect of back cavity-seal gas on flow loss of CAES radial inflow turbine under variable operation conditions[J]. Journal of Engineering Thermophysics, 2020, 41(1): 104-112.
WANG X, ZHU Y L, LI W, et al. Effects of blade tip profile based on NACA airfoil on aerodynamic performance of low aspect ratio radial-inflow turbine[J]. Journal of Mechanical Engineering, 2020, 56(18): 172-179.
WANG X, LI W, ZHANG X H, et al. Coupling optimization of casing groove and blade profile for a radial turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2021, 235(6): 1421-1434.
WANG X, LI W, ZHU Y, et al. Optimal design and flow loss reduction mechanism of bowed guide vane in a CAES axial flow turbine[J]. Energy Storage Science and Technology, 2021, 10(5): 1524-1535.
WANG X, LI W, ZHANG X H, et al. Efficiency improvement of a CAES low aspect ratio radial inflow turbine by NACA blade profile[J]. Renewable Energy, 2019, 138: 1214-1231.
WANG X, LI W, ZHANG X H, et al. Flow analysis and performance improvement of a radial inflow turbine with back cavity under variable operation condition of compressed air energy storage[J]. International Journal of Energy Research, 2019, 43(12): 6396-6408.
WANG X, ZHANG X H, ZUO Z T, et al. Effect of chamber roughness and local smoothing on performance of a CAES axial turbine[J]. Renewable Energy, 2021, 170: 500-516.
LI H, LI W, ZHANG X H, et al. Characteristic of a multistage reheating radial inflow in supercritical compressed air energy storage with variable operating parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2019, 233(3): 397-412.
LIU D, LI W, LI H, et al. Characteristic analysis of combined regulation of adjustable guide vanes of multistage radial inflow turbines[J]. Energy Storage Science and Technology, 2017, 6(6): 1286-1294.
LIAO Z R, ZHONG H, XU C, et al. Investigation of a packed bed cold thermal storage in supercritical compressed air energy storage systems[J]. Applied Energy, 2020, 269: doi: 10.1016/j.apenergy.2021.115132.
LI H Y, SHAO Z Y, ZHANG X H, et al. Preliminary design and performance analysis of the liquid turbine for supercritical compressed air energy storage systems[J]. Applied Thermal Engineering, 2022, 203: doi: 10.1016/j.applthermaleng.2021.117891.
ZHANG L, LIU L X, ZHANG C, et al. Performance analysis of an adiabatic compressed air energy storage system with a pressure regulation inverter-driven compressor[J]. Journal of Energy Storage, 2021, 43: doi: 10.1016/j.est.2021.103197.
HEO J Y, PARK J H, LEE J I. Experimental investigation of tank stratification in liquid air energy storage (LAES) system[J]. Applied Thermal Engineering, 2022, 202: doi: 10.1016/j.applthermaleng.2021.117841.
FU H L, HE Q, SONG J T, et al. Thermodynamic of a novel advanced adiabatic compressed air energy storage system with variable pressure ratio coupled organic Rankine cycle[J]. Energy, 2021, 227: doi: 10.1016/j.energy.2021.120411.
ALIRAHMI S M, BASHIRI MOUSAVI S, RAZMI A R, et al. A comprehensive techno-economic analysis and multi-criteria optimization of a compressed air energy storage (CAES) hybridized with solar and desalination units[J]. Energy Conversion and Management, 2021, 236: doi: 10.1016/j.enconman.2021.114053.
LI R X, ZHANG H R, CHEN H, et al. Hybrid techno-economic and environmental assessment of adiabatic compressed air energy storage system in China-Situation[J]. Applied Thermal Engineering, 2021, 186: doi: 10.1016/j.applthermaleng.2020.116443.
WANG Q, XU H J, HAN X C, et al. First principle calculation of thermochemical heat storage with MgO/Mg(OH)2 reaction[J]. CIESC Journal, 2021, 72(3): 1242-1252, 1783.
SHENG P, XU L, ZHAO G Y, et al. Preparation and thermophysical properties of novel mixed nitrate molten salts[J]. Energy Storage Science and Technology, 2021, 10(1): 170-176.
TIAN Y, LIU X L, XU Q, et al. Bionic topology optimization of fins for rapid latent heat thermal energy storage[J]. Applied Thermal Engineering, 2021, 194: doi: 10.1016/j.applthermaleng.2021.117104.
YAO Q Y, ZHAO C Y, ZHAO Y, et al. Topology optimization for heat transfer enhancement in latent heat storage[J]. International Journal of Thermal Sciences, 2021, 159: doi: 10.1016/j.ijthermalsci.2020.106578.
YU Q, LU Y W, ZHANG X P, et al. Comprehensive thermal properties of molten salt nanocomposite materials base on mixed nitrate salts with SiO2/TiO2 nanoparticles for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 230: doi: 10.1016/j.solmat.2021.111215.
LIN L, WANG L, LIN X P, et al. Experimental investigation on the distribution uniformity and pressure drop of perforated plate distributors for the innovative spray-type packed bed thermal storage[J]. Particuology, 2022, 61: 60-73.
DU P X, LIU C H, FANG B, et al. Experimental investigation on the stability and heat transfer enhancement of modified mircoencapsulated phase change materials and latent functionally thermal fluids[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102846.
WANG G, DANNEMAND M, XU C, et al. Thermal characteristics of a long-term heat storage unit with sodium acetate trihydrate[J]. Applied Thermal Engineering, 2021, 187: doi: 10.1016/j.applthermaleng.2021.116563.
LIU Y H, WANG L, PENG L, et al. Effect of additives on the cyclic thermal stability and thermal properties of sodium acetate trihydrate as a phase change material: An experimental study[J]. Solar Energy, 2022, 231: 473-483.
CHEN L, WANG L, WANG Y F, et al. Influence of phase change material volume shrinkage on the cyclic process of thermal energy storage: A visualization study[J]. Applied Thermal Engineering, 2022, 203: doi: 10.1016/j.applthermaleng.2021.117776.
FENG C L, E J Q, HAN W, et al. Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 144: doi: 10.1016/j.rser.2021.110954.
XU X H, SONG J, WU J F, et al. Preparation and thermal shock resistance of mullite and corundum co-bonded SiC ceramics for solar thermal storage[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2020, 35(1): 16-25.
LUO H H, SHEN Q, LIN J G, et al. Development of new low melting point mixed molten salt heat storage material[J]. Energy Storage Science and Technology, 2020, 9(6): 1755-1759.
GUO L L, LIU Q, YIN H Q, et al. Excellent corrosion resistance of 316 stainless steel in purified NaCl-MgCl2 eutectic salt at high temperature[J]. Corrosion Science, 2020, 166: doi: 10.corsci.2021.108473.
HAN X Y, WANG L, GE Z W, et al. The thermal storage and release kinetics of Co3O4/CoO redox reaction[J]. Energy Storage Science and Technology, 2021, 10(5): 1701-1708.
LIU X L, SHI H, MENG X G, et al. Solar-enhanced CO2 conversion with CH4 over synergetic NiCo alloy catalysts with light-to-fuel efficiency of 33.8%[J]. Solar RRL, 2021, 5(8): doi: 10.1002/solr.202100185.
HE M F, WANG Z F, YUAN G F, et al. A technical introduction of water pit for long-term seasonal solar thermal energy storage[J]. Building Energy Efficiency, 2021, 49(10): 66-70.
GUO F, ZHU X Y, ZHANG J Y, et al. Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating[J]. Applied Energy, 2020, 264: doi: 10.1016/j.apenergy.2020.114763.
ZHU M H, HUANG J, SONG M J, et al. Thermal performance of a thin flat heat pipe with grooved porous structure[J]. Applied Thermal Engineering, 2020, 173: doi: 10.1016/applthermaleng.2020.115215.
LIU Z C, QUAN Z H, ZHAO Y H, et al. Experimental research on the performance of ice thermal energy storage device based on micro heat pipe arrays[J]. Applied Thermal Engineering, 2021, 185: doi: 10.1016/applthermaleng.2020.116452.
CHEN M B, FU D K, SONG W J, et al. Performance of ice generation system using supercooled water with a directed evaporating method[J]. Energies, 2021, 14(21): doi: 10.3390/en14217021.
QIN Y X, LIU P, LI Z. Dynamic modeling and simulation of the thermal storage system in solar thermal power plant[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3125-3132.
GUO X, QIU Y F, SHI Z G, et al. Study on whole process characteristic of heat transfer in solar heating system with heat storage[J]. CIESC Journal, 2021, 72(10): 5384-5395.
TANG J, LV L, XU L X, et al. Optimization of main and auxiliary joint dispatching of active distribution network considering solar thermal and thermal storage under multiple time scales[J]. Water Resources and Power, 2021, 39(3): 190-194, 189.
ZHANG S T, LU H, LIN X J, et al. Operation scheduling optimization of integrated-energy system in industrial park in consideration of energy storage[J]. High Voltage Engineering, 2021, 47(1): 93-103.
ZHANG H, WANG L, LIN X P, et al. Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle[J]. Energy Storage Science and Technology, 2021, 10(5): 1796-1805.
LIN N Z, LI C C. Phase change materials for energy storage in cold-chain transportation[J]. Energy Storage Science and Technology, 2021, 10(3): 1040-1050.
XU D H, ZHOU X Z, XU Y J, et al. Performance law of a new composite seasonal underground thermal storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1768-1776.
SONG J P, WANG J W, LUO H, et al. Study on the performance of stretching mechanics of carbon fiber reinforced composite ring[J]. Composites Science and Engineering, 2021(6): 65-71.
DAI X J, HU D X, ZHANG Z L, et al. Analysis and application of high strength alloy steel flywheel structure and material[J]. Energy Storage Science and Technology, 2021, 10(5): 1667-1673.
JIA X Y, WANG J S, XU Y, et al. Rubbing behavior research of flywheel rotor for energy storage in view of influence of contact parameters[J]. Energy Storage Science and Technology, 2021, 10(5): 1643-1649.
REN Z Y, HUANG T, YANG L P. Radial vibration analysis of rigid flywheel rotor-foundation coupling system[J]. Machinery Design & Manufacture, 2021(3): 27-32, 38.
XIANG B, WANG X, WONG W O. Process control of charging and discharging of magnetically suspended flywheel energy storage system[J]. Journal of Energy Storage, 2022, 47: doi: 10.1016/j.est.2021.103629.
LIU M, WANG P, BI W, et al. Analysis and elimination of power frequency interference of displacement signal in magnetic suspension flywheel[J]. Chinese Journal of Electron Devices, 2021, 44(3): 579-584.
CHEN Z W, LI D W, ZOU X D, et al. Research on stable operation control method of flywheel energy storage system driven by doubly fed machine[J]. Journal of Electric Power Science and Technology, 2021, 36(1): 177-184.
CHEN Y Q. Preparation of polyaniline/lignosulfonat composite expander and its applications in lead-acid batteries[J]. Electronic Components and Materials, 2021, 40(2): 150-155.
CHEN Y Q. Preparation of polypyrrole/carbon black composites and their applications in lead-acid batteries[J]. Engineering Plastics Application, 2021, 49(8): 1-7.
LIU T, YU L, LIU J, et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries[J]. Nature Energy, 2021, 6(3): 277-286.
YUE J, ZHANG J, TONG Y, et al. Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime[J]. Nature Chemistry, 2021, 13(11): 1061-1069.
WANG K, REN Q, GU Z, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-24697-2.
GAO J X, WU J, HAN S Y, et al. A novel solid electrolyte formed by NASICON-type Li3Zr2Si2PO12 and poly (vinylidene fluoride) for solid state batteries[J]. Functional Materials Letters, 2021, 14(3): doi: 10.1142/s1793604721400014.
XU J C, PANG S, WANG X Y, et al. Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures[J]. Joule, 2021, 5(9): 2437-2449.
YU X, SONG Y X, TANG A. Tailoring manganese coordination environment for a highly reversible zinc-manganese flow battery[J]. Journal of Power Sources, 2021, 507: doi: 10.1016/j.jpowsour.2021.230295.
XIE C X, LIU Y, LU W J, et al. Highly stable zinc-iodine single flow batteries with super high energy density for stationary energy storage[J]. Energy & Environmental Science, 2019, 12(6): 1834-1839.
QIAO L, XIE C X, NAN M J, et al. Highly stable titanium-manganese single flow batteries for stationary energy storage[J]. Journal of Materials Chemistry A, 2021: 12606-12611.
LI T Y, XING F, LIU T, et al. Cost, performance prediction and optimization of a vanadium flow battery by machine-learning[J]. Energy & Environmental Science, 2020, 13(11): 4353-4361.
LI T Y, LU W J, YUAN Z Z, et al. A data-driven and DFT assisted theoretic guide for membrane design in flow batteries[J]. Journal of Materials Chemistry A, 2021, 9(25): 14545-14552.
ZHANG C K, LI X F. Perspective on organic flow batteries for large-scale energy storage[J]. Current Opinion in Electrochemistry, 2021, 30: doi: 10.1016/j.coelec.2021.100836.
DING F X, ZHAO C L, ZHOU D, et al. A novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries[J]. Energy Storage Materials, 2020, 30: 420-430.
RONG X H, HU E Y, LU Y X, et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition[J]. Joule, 2019, 3(2): 503-517.
QI Y R, TONG Z Z, ZHAO J M, et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes[J]. Joule, 2018, 2(11): 2348-2363.
BAUER A, SONG J, VAIL S, et al. The scale-up and commercialization of nonaqueous Na-ion battery technologies[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201702869.
ZHAO C L, WANG Q D, LU Y X, et al. High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau[J]. Science Bulletin, 2018, 63(17): 1125-1129.
MENG Q S, LU Y X, DING F X, et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Letters, 2019, 4(11): 2608-2612.
WANG Y, YU X, XU S, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nature Communications, 2013, 4: doi: 10.1038/ncomms3365.
RUDOLA A, RENNIE A J R, HEAP R, et al. Commercialisation of high energy density sodium-ion batteries: Faradion's journey and outlook[J]. Journal of Materials Chemistry A, 2021, 9(13): 8279-8302.
HUANG Y X, ZHAO L Z, LI L, et al. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application[J]. Advanced Materials, 2019, 31(21): doi: 10.1002/adma.201808393.
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522.
ZHOU Q, LI Y Q, TANG F, et al. Thermal stability of high power 26650-type cylindrical Na-ion batteries[J]. Chinese Physics Letters, 2021, 38(7): doi: 10.1088/0256-307x/38/7/076501.
ZHAO Z Y, XIA K Q, HOU Y, et al. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: From conductive polymers[J]. Chemical Society Reviews, 2021, 50(22): 12702-12743.
WU Y C, YE J L, JIANG G P, et al. Electrochemical characterization of single layer graphene/electrolyte interface: Effect of solvent on the interfacial capacitance[J]. Angewandte Chemie International Edition, 2021, 60(24): 13317-13322.
WU Z T, LIU X C, SHANG T X, et al. Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors[J]. Advanced Functional Materials, 2021, 31(41): doi: 10.1002/adfm.202102874.
AN Y B, LIU T Y, LI C, et al. A general route for the mass production of graphene-enhanced carbon composites toward practical pouch lithium-ion capacitors[J]. Journal of Materials Chemistry A, 2021, 9(28): 15654-15664.
SUN X Z, WANG P L, AN Y B, et al. A fast and scalable pre-lithiation approach for practical large-capacity lithium-ion capacitors[J]. Journal of the Electrochemical Society, 2021, 168(11): doi: 10.1149/1945-7111/ac38f7.
YIN Y, FANG Z, CHEN J W, et al. Hybrid Li-ion capacitor operated within an all-climate temperature range from -60 to +55 ℃[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45630-45638.
LI H M, WANG K L, CHENG S J, et al. High performance liquid metal battery with environmentally friendly antimony-tin positive electrode[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12830-12835.
LI H M, YIN H Y, WANG K L, et al. Liquid metal electrodes for energy storage batteries[J]. Advanced Energy Materials, 2016, 6(14): doi: 10.1002/aenm.201600483.
LI H M, WANG K L, ZHOU H, et al. Tellurium-tin based electrodes enabling liquid metal batteries for high specific energy storage applications[J]. Energy Storage Materials, 2018, 14: 267-271.
YAN S, ZHOU X B, LI H M, et al. Utilizing in situ alloying reaction to achieve the self-healing, high energy density and cost-effective Li||Sb liquid metal battery[J]. Journal of Power Sources, 2021, 514: doi: 10.1016/j.jpowsour.2021.230578.
DAI T, ZHAO Y, NING X H, et al. Capacity extended bismuth-antimony cathode for high-performance liquid metal battery[J]. Journal of Power Sources, 2018, 381: 38-45.
ZHAO W, LI P, LIU Z, et al. High performance antimony-bismuth-tin positive electrode for liquid metal battery[J]. Chemistry of Materials, 2018, 30(24): 8739-8746.
LIU G A, XU C, LI H M, et al. State of charge and online model parameters co-estimation for liquid metal batteries[J]. Applied Energy, 2019, 250: 677-684.
WANG X, SONG Z X, YANG K, et al. State of charge estimation for lithium-bismuth liquid metal batteries[J]. Energies, 2019, 12(1): doi: 10.3390/en12010183.
ZHNAG E, XU C, WANG S, et al. Two-stage equalizing system of liquid metal batteries based on fuzzy logic controller[J]. Proceedings of the CSEE, 2020, 40(12): 4024-4033.
PEI C Y, XIONG F Y, SHENG J Z, et al. VO2 nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17060-17066.
ZHANG Z H, CUI Z L, QIAO L X, et al. Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium-selenium and magnesium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(11): doi: 10.1002/aenm.201602055.
XU Y, ZHOU G M, ZHAO S Y, et al. Improving a Mg/S battery with YCl3 additive and magnesium polysulfide[J]. Advanced Science, 2020, 7(2): doi: 10.1002/advs.201903603.
SUN H B, WANG W, YU Z J, et al. A new aluminium-ion battery with high voltage, high safety and low cost[J]. Chemical Communications, 2015, 51(59): 11892-11895.
TU J G, SONG W L, LEI H P, et al. Nonaqueous rechargeable aluminum batteries: Progresses, challenges, and perspectives[J]. Chemical Reviews, 2021, 121(8): 4903-4961.
YANG C, CHEN J, JI X, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569(7755): 245-250.
SUO L M, OH D, LIN Y X, et al. How solid-electrolyte interphase forms in aqueous electrolytes[J]. Journal of the American Chemical Society, 2017, 139(51): 18670-18680.
KANG Z, WU C L, DONG L B, et al. 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3364-3371.
SUN K E K, HOANG T K A, DOAN T N L, et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9681-9687.
LI W, WANG K L, CHENG S J, et al. An ultrastable presodiated titanium disulfide anode for aqueous "rocking-chair" zinc ion battery[J]. Advanced Energy Materials, 2019, 9(27): doi: 10.1002/aenm.201900993.
LI W, MA Y S, LI P, et al. Electrochemically activated Cu2-xTe as an ultraflat discharge plateau, low reaction potential, and stable anode material for aqueous Zn-ion half and full batteries[J]. Advanced Energy Materials, 2021, 11(42): doi: 10.1002/aenm.202102607.
LIU P J, LI Y Q, MAO B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: doi: 10.1016/j.applthermaleng.2021.116949.
MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 A·h lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: doi: 10.1016/j.rser.2021.110717.
LIU Y J, YANG K, ZHANG M J, et al. The efficiency and toxicity of dodecafluoro-2-methylpentan-3-one in suppressing lithium-ion battery fire[J]. Journal of Energy Chemistry, 2022, 65: 532-540.
MENG X D, LI S, FU W D, et al. Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires[J]. eTransportation, 2022, 11: doi: 10.1016/j.etran.2021.100142.
SU S S, LI W, LI Y S, et al. Multi-objective design optimization of battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2021, 196: doi: 10.1016/j.applthermaleng.2021.117235.
QIN P, LIAO M R, MEI W X, et al. The experimental and numerical investigation on a hybrid battery thermal management system based on forced-air convection and internal finned structure[J]. Applied Thermal Engineering, 2021, 195: doi: 10.1016/j.applthermaleng.2021.117212.
YANG W, ZHOU F, CHEN X, et al. Performance analysis of axial air cooling system with shark-skin bionic structure containing phase change material[J]. Energy Conversion and Management, 2021, 250: doi: 10.1016/j.enconman.2021.114921.
ALIHOSSEINI A, SHAFAEE M. Experimental study and numerical simulation of a Lithium-ion battery thermal management system using a heat pipe[J]. Journal of Energy Storage, 2021, 39: doi: 10.1016/j.est.2021.102616.
JIANG L L, DENG Z W, TANG X L, et al. Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data[J]. Energy, 2021, 234: doi: 10.1016/j.energy.2021.121266.
HUANG Z H, LIU P J, DUAN Q L, et al. Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery[J]. Journal of Power Sources, 2021, 495: doi: 10.1016/j.jpowsour.2021.2306595.
QIN P, JIA Z Z, JIN K Q, et al. The experimental study on a novel integrated system with thermal management and rapid cooling for battery pack based on C6F12O spray cooling in a closed-loop[J]. Journal of Power Sources, 2021, 516: doi: 10.1016/j.jpowsour.2021.230659.