With the widespread use of lithium-ion batteries, the issue of thermal safety of lithium-ion batteries has become increasingly prominent. Compared with the costly and destructive experimental methods, modeling simulation has become an important tool for thermal safety research of Li-ion batteries due to its advantages of economy, safety and speed. In this paper, the latest lithium-ion battery models and their applications in thermal safety design are reviewed in three scales: microscopic modeling, single-cell modeling, and cell pack modeling. The applications of density flooding theory and molecular dynamics simulations in the regulation of lithium dendrite growth and safe design of electrolyte in Li-ion batteries, the application of single-cell modeling coupled with thermal equations, and the study of Li-ion battery group thermal modeling in optimizing the thermal management system of batteries are highlighted. Finally, the defects of the existing thermal models for Li-ion batteries are summarized, and the future research methods for Li-ion battery thermal models are prospected.
DU Jianglong. Application of simulation in thermal safety design of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 866-877
Fig. 1
(a) factors leading to thermal runaway of Li-ion batteries and results of thermal runaway[6]; (b) heat generation response inside a Li-ion battery at different temperatures[7-8]
Fig. 3
(a) deposition of lithium on graphite/N-doped graphite/N-P-doped graphite/P-doped graphite[18]; (b) Gibbs free energy change for interaction of Co3O4 with lithium[19]; (c) deposition of lithium at defect interface[20]; (d) FPM of growth process of lithium dendrites[21]
Fig. 4
(a) regulation of lithium deposition by SEI[22]; (b) distribution of lithium ions within different SEI compositions[23]; (c) effect of SEI on desolvation of lithium ions[24]
Fig. 5
(a) optimization of electrolyte by DMF[26]; (b) structure of EBC and DFT calculations for EC, EBC and VC[27]; (c) LUMO and HOMO energies for AN and pyridine; (d) snapshots of molecular dynamics simulations of LiPF6 in AN electrolyte[28]
HAN X B, LU L G, ZHENG Y J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: doi: 10.1016/j.etran.2019.100005.
XU B, LEE J, KWON D, et al. Mitigation strategies for Li-ion battery thermal runaway: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: doi: 10.1016/j.rser.2021.111437.
WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131.
ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: A review[J]. Journal of Power Sources, 2016, 306: 178-192.
KONG L C, LI Y, FENG W. Strategies to solve lithium battery thermal runaway: From mechanism to modification[J]. Electrochemical Energy Reviews, 2021, 4(4): 633-679.
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
MANDAL B K, PADHI A K, SHI Z, et al. Thermal runaway inhibitors for lithium battery electrolytes[J]. Journal of Power Sources, 2006, 161(2): 1341-1345.
ABRAHAM D P, ROTH E P, KOSTECKI R, et al. Diagnostic examination of thermally abused high-power lithium-ion cells[J]. Journal of Power Sources, 2006, 161(1): 648-657.
NEWMAN J S, TOBIAS C W. Theoretical analysis of current distribution in porous electrodes[J]. Journal of the Electrochemical Society, 1962, 109(12): doi: 10.1149/1.2425269.
XIAO M, CHOE S Y. Dynamic modeling and analysis of a pouch type LiMn2O4/Carbon high power Li-polymer battery based on electrochemical-thermal principles[J]. Journal of Power Sources, 2012, 218: 357-367.
GHALKHANI M, BAHIRAEI F, NAZRI G A, et al. Electrochemical-thermal model of pouch-type lithium-ion batteries[J]. Electrochimica Acta, 2017, 247: 569-587.
CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
LI K, HU Z Y, MA J Z, et al. A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Advanced Materials, 2019, 31(33): doi: 10.1002/adma.201902399.
LI S Y, LIU Q L, ZHOU J J, et al. Hierarchical Co3O4 nanofiber-carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries[J]. Advanced Functional Materials, 2019, 29(19): doi: 10.1002/adfm.201808847.
HUANG K, LIU Y, LIU H L. Understanding and predicting lithium crystal growth on perfect and defective interfaces: A Kohn-Sham density functional study[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 37239-37246.
YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior[J]. Electrochimica Acta, 2018, 265: 609-619.
LI Y S, LEUNG K, QI Y. Computational exploration of the Li-electrode|electrolyte interface in the presence of a nanometer thick solid-electrolyte interphase layer[J]. Accounts of Chemical Research, 2016, 49(10): 2363-2370.
ZHANG S Y, LIU Y, LIU H L. Understanding lithium transport in SEI films: A nonequilibrium molecular dynamics simulation[J]. Molecular Simulation, 2020, 46(7): 573-580.
CHENG H R, SUN Q J, LI L L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Letters, 2022, 7(1): 490-513.
ZHU X M, JIANG X Y, AI X P, et al. Bis(2,2,2-trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery[J]. Electrochimica Acta, 2015, 165: 67-71.
YOU L, DUAN K J, ZHANG G B, et al. N,N-dimethylformamide electrolyte additive via a blocking strategy enables high-performance lithium-ion battery under high temperature[J]. The Journal of Physical Chemistry C, 2019, 123(10): 5942-5950.
QIAN Y X, CHU Y L, ZHENG Z T, et al. A new cyclic carbonate enables high power/low temperature lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 14-23.
MATSUOKA N, KAMINE H, NATSUME Y, et al. Moderately concentrated acetonitrile-containing electrolytes with high ionic conductivity for durability-oriented lithium-ion batteries[J]. Chem ElectroChem, 2021, 8(16): 3095-3104.
LU W Q, YANG H, PRAKASH J. Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery[J]. Electrochimica Acta, 2006, 51(7): 1322-1329.
PETIT M, CALAS E, BERNARD J. A simplified electrochemical model for modelling Li-ion batteries comprising blend and bidispersed electrodes for high power applications[J]. Journal of Power Sources, 2020, 479: doi: 10.1016/j.jpowsour.2020.228766.
BERRUETA A, URTASUN A, URSÚA A, et al. A comprehensive model for lithium-ion batteries: From the physical principles to an electrical model[J]. Energy, 2018, 144: 286-300.
MIRANDA D, ALMEIDA A M, LANCEROS-MÉNDEZ S, et al. Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries[J]. Energy, 2019, 185: 1250-1262.
ZHOU H W, PARMANANDA M, CROMPTON K R, et al. Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios[J]. Energy Storage Materials, 2022, 44: 326-341.
REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573.
WANG H M, SHI W J, HU F, et al. Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode[J]. Energy, 2021, 224: doi: 10.1016/j.energy. 2021.120072.
SAW L H, YE Y, TAY A A O. Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles[J]. Applied Energy, 2014, 131: 97-107.
XIE Y, HE X J, LI W, et al. A novel electro-thermal coupled model of lithium-ion pouch battery covering heat generation distribution and tab thermal behaviours[J]. International Journal of Energy Research, 2020, 44(14): 11725-11741.
PALS C R, NEWMAN J. Thermal modeling of the lithium/polymer battery (Ⅰ): Discharge behavior of a single cell[J]. Journal of the Electrochemical Society, 1995, 142(10): 3274-3281.
PALS C R, NEWMAN J. Thermal modeling of the lithium/polymer battery (Ⅱ): Temperature profiles in a cell stack[J]. Journal of the Electrochemical Society, 1995, 142(10): 3282-3288.
DU J L, TAO H L, CHEN Y X, et al. Thermal management of air-cooling lithium-ion battery pack[J]. Chinese Physics Letters, 2021, 38(11): doi: 10.1088/0256-307X/38/11/118201.
BOTTE G G, JOHNSON B A, WHITE R E. Influence of some design variables on the thermal behavior of a lithium-ion cell[J]. Journal of the Electrochemical Society, 1999, 146(3): 914-923.
SRINIVASAN V, WANG C Y. Analysis of electrochemical and thermal behavior of Li-ion cells[J]. Journal of the Electrochemical Society, 2002, 150(1): doi: 10.1149/1.1526512.
GUO M, SIKHA G, WHITE R E. Single-particle model for a lithium-ion cell: Thermal behavior[J]. Journal of the Electrochemical Society, 2011, 158(2): A122-A132.
GUO G F, LONG B, CHENG B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195(8): 2393-2398.
WU S, BAI Y, LUAN W, et al. Thermal runaway model of high-nickel large format lithium-ion battery under thermal abuse conditions[C]//IOP Conference Series: Earth and Environmental Science, 2021.
AKINLABI A A H, SOLYALI D. Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 125: doi: 10.1016/j.rser.2020.109815.
LI X K, ZHAO J P, YUAN J L, et al. Simulation and analysis of air cooling configurations for a lithium-ion battery pack[J]. Journal of Energy Storage, 2021, 35: doi: 10.1016/j.est.2021.102270.
DUAN J B, ZHAO J P, LI X K, et al. Modeling and analysis of heat dissipation for liquid cooling lithium-ion batteries[J]. Energies, 2021, 14(14): doi: 10.3390/en14144187.
WANG T, TSENG K J, ZHAO J Y. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model[J]. Applied Thermal Engineering, 2015, 90: 521-529.
CHEN F F, HUANG R, WANG C M, et al. Air and PCM cooling for battery thermal management considering battery cycle life[J]. Applied Thermal Engineering, 2020, 173: doi: 10.1016/j.applthermaleng.2020.115154.
AKBARZADEH M, KALOGIANNIS T, JAGUEMONT J, et al. A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module[J]. Applied Thermal Engineering, 2021, 198: doi: 10.1016/j.applthermaleng.2021.117503.
... [6];(b) 不同温度时锂离子电池内部的产热反应[7-8](a) factors leading to thermal runaway of Li-ion batteries and results of thermal runaway[6]; (b) heat generation response inside a Li-ion battery at different temperatures[7-8]Fig. 1
(a) factors leading to thermal runaway of Li-ion batteries and results of thermal runaway[6]; (b) heat generation response inside a Li-ion battery at different temperatures[7-8]Fig. 1
(a) factors leading to thermal runaway of Li-ion batteries and results of thermal runaway[6]; (b) heat generation response inside a Li-ion battery at different temperatures[7-8]Fig. 1
... [18];(b) Co3O4 与锂作用的吉布斯自由能变化[19];(c) 锂原子在缺陷界面上的沉积[20];(d) 锂枝晶的生长过程的相场模拟[21](a) deposition of lithium on graphite/N-doped graphite/N-P-doped graphite/P-doped graphite[18]; (b) Gibbs free energy change for interaction of Co3O4 with lithium[19]; (c) deposition of lithium at defect interface[20]; (d) FPM of growth process of lithium dendrites[21]Fig. 3
... [18]; (b) Gibbs free energy change for interaction of Co3O4 with lithium[19]; (c) deposition of lithium at defect interface[20]; (d) FPM of growth process of lithium dendrites[21]Fig. 3
... [19];(c) 锂原子在缺陷界面上的沉积[20];(d) 锂枝晶的生长过程的相场模拟[21](a) deposition of lithium on graphite/N-doped graphite/N-P-doped graphite/P-doped graphite[18]; (b) Gibbs free energy change for interaction of Co3O4 with lithium[19]; (c) deposition of lithium at defect interface[20]; (d) FPM of growth process of lithium dendrites[21]Fig. 3
... [20];(d) 锂枝晶的生长过程的相场模拟[21](a) deposition of lithium on graphite/N-doped graphite/N-P-doped graphite/P-doped graphite[18]; (b) Gibbs free energy change for interaction of Co3O4 with lithium[19]; (c) deposition of lithium at defect interface[20]; (d) FPM of growth process of lithium dendrites[21]Fig. 3
... [21](a) deposition of lithium on graphite/N-doped graphite/N-P-doped graphite/P-doped graphite[18]; (b) Gibbs free energy change for interaction of Co3O4 with lithium[19]; (c) deposition of lithium at defect interface[20]; (d) FPM of growth process of lithium dendrites[21]Fig. 3
... [22];(b) 锂离子在不同SEI成分内的分布[23];(c) SEI对锂离子去溶剂化的作用[24](a) regulation of lithium deposition by SEI[22]; (b) distribution of lithium ions within different SEI compositions[23]; (c) effect of SEI on desolvation of lithium ions[24]Fig. 4
... [23];(c) SEI对锂离子去溶剂化的作用[24](a) regulation of lithium deposition by SEI[22]; (b) distribution of lithium ions within different SEI compositions[23]; (c) effect of SEI on desolvation of lithium ions[24]Fig. 4
... [24](a) regulation of lithium deposition by SEI[22]; (b) distribution of lithium ions within different SEI compositions[23]; (c) effect of SEI on desolvation of lithium ions[24]Fig. 4
... [26];(b) EBC的结构以及EC、EBC、VC的DFT计算结果[27];(c) AN和吡啶的LUMO和HOMO能量;(d) LiPF6 在AN电解液中分子动力学模拟快照[28](a) optimization of electrolyte by DMF[26]; (b) structure of EBC and DFT calculations for EC, EBC and VC[27]; (c) LUMO and HOMO energies for AN and pyridine; (d) snapshots of molecular dynamics simulations of LiPF6 in AN electrolyte[28]Fig. 5
... [26]; (b) structure of EBC and DFT calculations for EC, EBC and VC[27]; (c) LUMO and HOMO energies for AN and pyridine; (d) snapshots of molecular dynamics simulations of LiPF6 in AN electrolyte[28]Fig. 5
... [27];(c) AN和吡啶的LUMO和HOMO能量;(d) LiPF6 在AN电解液中分子动力学模拟快照[28](a) optimization of electrolyte by DMF[26]; (b) structure of EBC and DFT calculations for EC, EBC and VC[27]; (c) LUMO and HOMO energies for AN and pyridine; (d) snapshots of molecular dynamics simulations of LiPF6 in AN electrolyte[28]Fig. 5
... [28](a) optimization of electrolyte by DMF[26]; (b) structure of EBC and DFT calculations for EC, EBC and VC[27]; (c) LUMO and HOMO energies for AN and pyridine; (d) snapshots of molecular dynamics simulations of LiPF6 in AN electrolyte[28]Fig. 5