Combining the conducting polymer polypyrrole (PPy) with layered molybdenum disulfide (MoS2) has proved to be an effective strategy to obtain a porous network flexible electrode. Various self-standing flexible electrodes with different structural parameters can be synthesized by controlling the preparation conditions. In this study, kinetics of the electrochemical behavior of PPy-MoS2 electrodes were systematically investigated by analyzing electrochemical impedance spectroscopy and cyclic voltammetry (CV) curves. The Trasatti analysis method was adopted to quantify the charge stored at the inner and outer surfaces during energy storage. Results show that the volumetric capacity of the porous network flexible electrodes varies with thickness. The difference in volumetric capacity derives from the kinetic control on the energy storage reaction. The dominant control in that reaction changes from surface control to diffusion control as the thickness of the flexible electrode increases from 5 to 60 μm. When surface control and diffusion control coexist at similar levels, the porous network flexible electrode yields its maximum capacity (68 mA·h/cm3 at 5 mV/s). Therefore, to maximize storage efficiency, the interaction between active materials and electrolyte ions should be carefully optimized when the porous network film is applied to a flexible electrode.
Keywords:porous network flexible electrode
;
kinetic analysis
;
surface control
;
diffusion control
;
storage efficiency
(1)MoS2纳米片的制备:0.3 g Na2MoO4与0.6 g TAA加入到20 mL EG和30 mL纯水的混合溶液中,搅拌0.5 h直至充分溶解,混合均匀。然后将反应前驱体转移至100 mL反应釜中,200 ℃加热24 h。待反应完成后,将反应物通过清水过滤清洗,得到MoS2纳米片水分散液。进行浓度标定后,继续加纯水将MoS2的浓度稀释至0.5 mg/mL。
Fig. 3
(a) Volumetric capacity of the porous network flexible electrodes at different sweep rates; (b) plot of volumetric capacity (5 mV/s) of the porous network flexible electrodes variation as a function of film density
Fig. 4
(a) Electrochemical impedance spectroscopy (EIS) and (b) the corresponding fitted curves of the porous network electrodes with thicknesses of 35 μm and 60 μm
图5
厚度分别为(a) 5 μm、(b) 7.5 μm、(c) 35 μm、(d) 50 μm和(e) 60 μm的多孔网络柔性电极的阳极、阴极峰电流与扫描速率之间的关系,其斜率为 b 值;(f) 不同厚度的多孔网络柔性电极的 b 值对比
Fig. 5
b-value determination of the peak anodic and cathodic currents of the porous network flexible electrodes with thicknesses of (a) 5 μm, (b) 7.5 μm, (c) 35 μm, (d) 50 μm, (e) 60 μm; and (f) b-values at different thicknesses
Fig. 6
Dependence of qv on v-1/2 of porous network film electrode with thicknesses of (a) 5μm, (c) 7.5 μm, and (e) 35 μm; Ratios of diffusion contribution and non-diffusion contribution of (b) 5μm, (d) 7.5 μm, and (f) 35 μm
CHEN Q M, ZHENG C X, LI H Y. Analysis on international development trend of energy storage technology based on bibliometrics[J]. Energy Storage Science and Technology, 2020, 9(1): 296-305.
LI X F, ZHANG H Z, ZHENG Q, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449.
WANG S W, WANG F, WANG P Y, et al. 3D porous graphene composite film embedded by Ni/NiO nanoparticles as freestanding electrodes for efficient energy storage devices[J]. Nanotechnology, 2020, 31(47): 1-10.
RELEKAR B P, FULARI A V, LOHAR G M, et al. Development of porous manganese oxide/polyaniline composite using electrochemical route for electrochemical supercapacitor[J]. Journal of Electronic Materials, 2019, 48(4): 2449-2455.
RAJESH M, MANIKANDAN R, KIM B C, et al. Electrochemical polymerization of chloride doped PEDOT hierarchical porous nanostructure on graphite as a potential electrode for high performance supercapacitor[J]. Electrochimica Acta, 2020, 354: doi:10.1016/j.electacta.2020.136669.
VAN NGO T, MOUSSA M, TUNG T T, et al. Hybridization of MOFs and graphene: A new strategy for the synthesis of porous 3D carbon composites for high performing supercapacitors[J]. Electrochimica Acta, 2020, 329: doi:10.1016/j.electacta.2019.135104.
FARAJI M, MOHAMMADZADEH AYDISHEH H. Facile and scalable preparation of highly porous polyvinyl chloride-multi walled carbon nanotubes-polyaniline composite film for solid-state flexible supercapacitor[J]. Composites Part B: Engineering, 2019, 168: 432-441.
MENG Q F, CAI K F, CHEN Y X, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017, 36: 268-285.
TIAN Y Y, YANG C, SONG X F, et al. Engineering the volumetric effect of polypyrrole for auto-deformable supercapacitor[J]. Chemical Engineering Journal, 2019, 374: 59-67.
TIAN Y Y, SONG X F, LIU J, et al. Generation of monolayer MoS2 with 1T phase by spatial-confinement-induced ultrathin PPy anchoring for high-performance supercapacitor[J]. Advanced Materials Interfaces, 2019, 6(10): doi: 10.1002/admi.201900162.
TIAN Y Y, LIU J, SONG X F, et al. Interface guide: In-situ integrating MoS2 nanosheets into highly ordered polypyrrole film for high performance flexible supercapacitor electrodes[J]. Composites Science and Technology, 2020, 197: doi:10.1016/j.compscitech.2020.108263.
PANIGRAHI K, HOWLI P, CHATTOPADHYAY K K. 3D network of V2O5 for flexible symmetric supercapacitor[J]. Electrochimica Acta, 2020, 337: doi:10.1016/j.electacta.2020.135701.
ZHAI S X, JIN K L, ZHOU M, et al. A novel high performance flexible supercapacitor based on porous carbonized cotton/ZnO nanoparticle/CuS micro-sphere[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584:doi:10.1016/j.colsurfa.2019.124025.
CHENG Q H, YANG C, HAN L, et al. Construction of hierarchical 2D PANI/Ni3S2 nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors[J]. Batteries & Supercaps, 2020, 3(4): 370-375.
SORAM B S, THANGJAM I S, DAI J Y, et al. Flexible transparent supercapacitor with core-shell Cu@Ni@NiCoS nanofibers network electrode[J]. Chemical Engineering Journal, 2020, 395:doi:10.1016/j.cej.2020.125019.
BEYAZAY T, OZTUNA F E S, UNAL O, et al. Free-standing N-doped reduced graphene oxide papers decorated with iron oxide nanoparticles: Stable supercapacitor electrodes[J]. ChemElectroChem, 2019, 6(14): 3774-3781.
TIWARI P, JANAS D, CHANDRA R. Self-standing MoS2/CNT and MnO2/CNT one dimensional core shell heterostructures for asymmetric supercapacitor application[J]. Carbon, 2021, 177: 291-303.
XIAO L D, QI H J, QU K Q, et al. Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes[J]. Advanced Composites and Hybrid Materials, 2021, 4(2): 306-316.
LIU Q F, ZANG L M, QIAO X, et al. Compressible all-in-one supercapacitor with adjustable output voltage based on polypyrrole-coated melamine foam[J]. Advanced Electronic Materials, 2019, 5(12): doi: 10.1002/aelm.201900724.
LINDSTRÖM H, SÖDERGREN S, SOLBRAND A, et al. Li+ ion insertion in TiO2 (anatase). 2. voltammetry on nanoporous films[J]. The Journal of Physical Chemistry B, 1997, 101(39): 7717-7722.
YAN J, REN C E, MALESKI K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials, 2017, 27(30): doi:10.1002/adfm.201701264.
AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522.
YANG C H, TANG Y, TIAN Y P, et al. Achieving of flexible, free-standing, ultracompact delaminated titanium carbide films for high volumetric performance and heat-resistant symmetric supercapacitors[J]. Advanced Functional Materials, 2018, 28(15): doi:10.1002/adfm.201705487.