Aqueous zinc ion batteries (ZIBs) are up-and-coming energy storage systems due to their safety, low cost, and environmental friendliness; hence have vast research potential. Despite rapid improvements in high-performance cathode materials, research on zinc anodes is still lacking. Many strategies focus on improving the zinc anode performance and anode protection to address the inherent shortcomings. In this review, the relevant literature suggests that low Coulomb efficiency (CE) and poor cycling performance are challenges for zinc anode at present, which are due to zinc anode dendrite growth and corrosion phenomena. In this paper, the methods to improve the performance of zinc anode are compared in detail on following aspects: zinc anode alloying treatment, surface structure modification, interfacial protection, electrolyte zinc salt comparison, electrolyte additives, and gel electrolyte, by reviewing recent research on zinc anode design and electrolyte optimization to change the interfacial properties of zinc anode. Finally, we outline the demand for ZIBs research and future strategies for stabilizing the zinc anode interface.
WANG Xinyi. Challenges and optimization strategies of the anode of aqueous zinc-ion battery[J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225
随着能源需求日益增长,传统化石燃料面临枯竭。太阳能、风能等可再生清洁能源的发展和研究成为了必然[1]。然而,这些可再生能源的应用受到了气候、时空及地理条件等限制,对研究顺利开展造成了挑战。相比之下,可充电电池显示出了稳定性好、储能方便的优势[2-7]。归因于循环寿命长、能量密度和可充电性高等优点,锂离子电池占据着电动汽车和便携电子设备的主导地位[8-9]。然而,锂离子电池的技术发展受到了潜在的安全隐患和锂资源减少的限制[10]。金属锌(Zn)因具有高理论容量(820 mA·h/g)、低电镀/剥离电位(-0.76 V 相对于标准氢电极[SHE])[11-13]、易加工等优点而在其他碱金属中脱颖而出,成为了可持续储能系统的重点研究方向之一[14-16]。以锌为负极的锌基电池,如锌-空气电池[17-18]、Zn-V2O5电池[19-20]、Zn-MnO2电池[21-22]已经被广泛研究。更重要的是其高导电性、高功率密度、在水中的高稳定性和安全性,奠定了ZIBs作为未来重点研究方向的基础。然而枝晶形成和界面副反应阻碍了其实际应用[23-29],它们会严重影响电池的稳定性和使用寿命,极易导致电池故障。
Fig. 4
(a) Schematic of the seeded Zn plating on the Ag islands patterned on carbon paper[58]; (b) Operando optical microscopy analysis of Zn plating and C-Ag electrodes[58]; (c) Schematic illustration of the fabrication process of the Cu/Zn electrode[48]; (d) The XRD result of Cu/Zn-30d electrode[48]; (e) Cycling performance of Zn||MnO2 and Cu/Zn||MnO2 full cells[48]
Fig. 5
(a) Schematic diagrams of Zn deposition/stripping processes on 3D Zn electrodes and planar Zn foil electrodes[60]; (b) Cycling performance of full cells with 3D Zn anodes or planar Zn foil anodes in the electrolyte containing 2 mol·L-1 ZnSO4 and 0.5 mol·L-1 MnSO4[60]; (c) Morphology of bare Zn and Zn@ZnO-3D[62]
Fig. 6
(a) Schematic the stripping/plating processes of the bare Zn anode and the ZrO2-coated Zn anode[41]; (b) Electrochemical impedance spectra (EIS) of symmetric cells with bare Zn and PANZ@Zn anodes[67]; (c) After the 100th cycle, digital picture of bare Zn anode side and PANZ@Zn side[67]; (d) Schematics of the behaviour of bare Zn and Zn/In anodes in an aqueous ZnSO4 electrolyte[68]; (e) XRD patterns of bare Zn and Zn/In before and after immersion in the aqueous ZnSO4 electrolyte[68]; (f) The cycling performance of bare Zn and Zn/In in symmetric cells[68]
Fig. 7
(a) Rate performances[81]; (b) GCD curves of Zn||Zn symmetric cells with different electrolyte salt[81]; (c) Characterization results of the Zn foils[81]; (d) The freezing points of different concentrations of Zn(BF4)2 electrolyte solvent[82]; (e) Characterization of aqueous Zn(CF3SO3)2 electrolyte with different concentrations (1-4 M)viscosity and ionic conductivity[83]; (f) CE curve of different concentration of Zn (CF3SO3)2 electrolyte[83]
Fig. 8
(a) Schematic illustrations of morphology evolution for Zn foils with different electrolytes during Zn stripping/plating cycling[92]; (b) Raman spectra of Zn anode surface after long cycling process with or without additives[92]; (c) The XRD patterns of pristine Zn plate, Zn plate soaked in water, and Zn plate soaked in Sac/water[95]; (d) The Schematic diagrams for Zn deposition cycled in Sac/ZnSO4 and ZnSO4 electrolyte[95]; (e) Cycling performance and CE comparison of Zn||MnO2 and 3D-Zn||MnO2 batteries in the different electrolytes[96]
Fig. 9
(a) Photographs of the Alg-Zn electrolyte[100]; (b) The molecular formulas of Alg-Na and Alg-Zn[100]; (c) XRD patterns of the Zn foil before and after cycles[100]; (d) EIS of the HGE with different salt concentrations[102]; (e) EIS spectra of Zn||Zn symmetric cells with different concentrations of PAMPSZn hydrogel electrolyte[103]
HUANG Z F, SONG J J, DU Y H, et al. Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation[J]. Carbon Energy, 2019, 1(1): 77-84.
XIE C L, LI Y H, WANG Q, et al. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review[J]. Carbon Energy, 2020, 2(4): 540-560.
CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2016, 16(1): 16-22.
ZHANG Y M, LIU N. Nanostructured electrode materials for high-energy rechargeable Li, Na and Zn batteries[J]. Chemistry of Materials, 2017, 29(22): 9589-9604.
LI W J, HAN C, XIA Q B, et al. Remarkable enhancement in sodium-ion kinetics of NaFe2(CN)6 by chemical bonding with graphene[J]. Small Methods, 2018, 2(4): doi: 10.1002/smtd. 201700346.
LIU L Y, LIANG J J, WANG W L, et al. A P3-type K1/2Mn5/6Mg1/12Ni1/12O2 cathode material for potassium-ion batteries with high structural reversibility secured by the Mg-Ni pinning effect[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28369-28377.
LI W J, HAN C, WANG W L, et al. Stress distortion restraint to boost the sodium ion storage performance of a novel binary hexacyanoferrate[J]. Advanced Energy Materials, 2020, 10(4): doi: 10.1002/aenm.201903006.
WU J X, CAO Y L, ZHAO H M, et al. The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries[J]. Carbon Energy, 2019, 1(1): 57-76.
AO H S, ZHAO Y Y, ZHOU J, et al. Rechargeable aqueous hybrid ion batteries: Developments and prospects[J]. Journal of Materials Chemistry A, 2019, 7(32): 18708-18734.
WANG S T, YANG Y, DONG Y H, et al. Recent progress in Ti-based nanocomposite anodes for lithium ion batteries[J]. Journal of Advanced Ceramics, 2019, 8(1): 1-18.
BUTLER K T, I GAUTAM G S, CANEPA P. Designing interfaces in energy materials applications with first-principles calculations[J]. Npj Computational Materials, 2019, 5: 19.
LIANG Y, DONG H, AURBACH D, et al. Current status and future directions of multivalent metal-ion batteries[J]. Nature Energy, 2020, 5(9): 646-656.
XIA C, GUO J, LEI Y, et al. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode[J]. Advanced Materials (Deerfield Beach, Fla), 2018, doi: 10.1002/adma.201907798.
HENG Y L, GU Z Y, GUO J Z, et al. Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(3): 17-32.
YANG D, TAN H T, RUI X H, et al. Electrode materials for rechargeable zinc-ion and zinc-air batteries: Current status and future perspectives[J]. Electrochemical Energy Reviews, 2019, 2(3): 395-427.
YI J, LIU X Y, LIANG P C, et al. Non-noble iron group (Fe, Co, Ni)-based oxide electrocatalysts for aqueous zinc-air batteries: Recent progress, challenges, and perspectives[J]. Organometallics, 2019, 38(6): 1186-1199.
HU P, YAN M Y, ZHU T, et al. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42717-42722.
YANG Y Q, TANG Y, LIANG S Q, et al. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability[J]. Nano Energy, 2019, 61: 617-625.
ZHANG N, CHENG F, LIU J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communications, 2017, 8: 405.
HUANG J, WANG Z, HOU M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications, 2018, 9: 2906.
LI H F, MA L T, HAN C P, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587.
SHIN J, LEE J M, PARK Y, et al. Aqueous zinc ion batteries: Focus on zinc metal anodes[J]. Chemical Science, 2020, 11(8): 2028-2044.
ZHANG Q, LUAN J Y, TANG Y G, et al. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(32): 13180-13191.
HAN C, WANG X Y, PENG J, et al. Recent progress on two-dimensional carbon materials for emerging post-lithium (Na+, K+, Zn2+) hybrid supercapacitors[J]. Polymers, 2021, 13(13): 2137.
LI W J, HAN C, GU Q F, et al. Electron delocalization and dissolution-restraint in vanadium oxide superlattices to boost electrochemical performance of aqueous zinc-ion batteries[J]. Advanced Energy Materials, 2020, 10(48): doi: 10.1002/aenm. 202001852.
HAN C, LI W J, LIU H K, et al. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries[J]. Nano Energy, 2020, 74: doi: 10.1016/j.nanoen.2020. 104880.
LI W J, HAN C, WANG Y, et al. Structural modulation of manganese oxides for zinc-ion batteries[J]. Chinese Journal of Structural Chemistry, 2020, 39(1): 31-35.
ZHANG L, MIAO L C, XIN W L, et al. Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode[J]. Energy Storage Materials, 2022, 44: 408-415.
LI H F, LIU Z X, LIANG G J, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte[J]. ACS Nano, 2018, 12(4): 3140-3148.
LI B, NIE Z, VIJAYAKUMAR M, et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery[J]. Nature Communications, 2015, 6: 6303.
LIU Z, CUI T, PULLETIKURTHI G, et al. Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries[J]. Angewandte Chemie (International Ed in English), 2016, 55(8): 2889-2893.
YUAN Z Z, DUAN Y Q, LIU T, et al. Toward a low-cost alkaline zinc-iron flow battery with a polybenzimidazole custom membrane for stationary energy storage[J]. iScience, 2018, 3: 40-49.
JIA H, WANG Z Q, TAWIAH B, et al. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries[J]. Nano Energy, 2020, 70: doi: 10.1016/j.nanoen.2020.104523.
CHEN D, LU M J, CAI D, et al. Recent advances in energy storage mechanism of aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2021, 54: 712-726.
LIANG P C, YI J, LIU X Y, et al. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries[J]. Advanced Functional Materials, 2020, 30(13): doi: 10.1002/adfm.201908528.
YUAN L B, HAO J N, KAO C C, et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries[J]. Energy & Environmental Science, 2021, 14(11): 5669-5689.
SAJJADNEJAD M, GHORBANI M, AFSHAR A. Microstructure-corrosion resistance relationship of direct and pulse current electrodeposited Zn-TiO2 nanocomposite coatings[J]. Ceramics International, 2015, 41(1): 217-224.
FU J, CANO Z P, PARK M G, et al. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Advanced Materials (Deerfield Beach, Fla), 2017, doi: 10.1002/adma. 201604685.
MA L T, CHEN S M, LI H F, et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(ⅲ) rich-electrode[J]. Energy & Environmental Science, 2018, 11(9): 2521-2530.
BAYAGUUD A, FU Y P, ZHU C B. Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies[J]. Journal of Energy Chemistry, 2022, 64: 246-262.
CAI Z, OU Y T, WANG J D, et al. Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries[J]. Energy Storage Materials, 2020, 27: 205-211.
MCKUBRE M C H, MACDONALD D D. The dissolution and passivation of zinc in concentrated aqueous hydroxide[J]. Journal of the Electrochemical Society, 1981, 128(3): 524-530.
YANG Q, LI Q, LIU Z X, et al. Dendrites in Zn-based batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(48): doi: 10.1002/adma.202001854.
KHOR A, LEUNG P, MOHAMED M R, et al. Review of zinc-based hybrid flow batteries: From fundamentals to applications[J]. Materials Today Energy, 2018, 8: 80-108.
BANIK S J, AKOLKAR R. Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive[J]. Journal of the Electrochemical Society, 2013, 160(11): D519-D523.
NAKATA A, ARAI H, YAMANE T, et al. Preserving zinc electrode morphology in aqueous alkaline electrolytes mixed with highly concentrated organic solvent[J]. Journal of the Electrochemical Society, 2015, 163(2): A50-A56.
PARKER J F, PALA I R, CHERVIN C N, et al. Minimizing shape change at Zn sponge anodes in rechargeable Ni-Zn cells: Impact of electrolyte formulation[J]. Journal of the Electrochemical Society, 2015, 163(3): A351-A355.
WU T H, ZHANG Y, ALTHOUSE Z D, et al. Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries[J].Materials Today Nano, 2019, 6:doi:10.1016/j.mtnano.2019.100032.
ZHANG Y M, HOWE J D, BEN-YOSEPH S, et al. Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries[J]. ACS Energy Letters, 2021, 6(2): 404-412.
SHI X D, XU G F, LIANG S Q, et al. Homogeneous deposition of zinc on three-dimensional porous copper foam as a superior zinc metal anode[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(21): 17737-17746.
KANG Z, WU C L, DONG L B, et al. 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3364-3371.
KUNDU D P, HOSSEINI V S, WAN L W, et al. Aqueous vs. nonaqueous Zn-ion batteries: Consequences of the desolvation penalty at the interface[J]. Energy & Environmental Science, 2018, 11(4): 881-892.
XIE X S, LIANG S Q, GAO J W, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes[J]. Energy & Environmental Science, 2020, 13(2): 503-510.
JIAN Q P, GUO Z X, ZHANG L C, et al. A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes[J]. Chemical Engineering Journal, 2021, 425: doi: 10.1016/j.cej.2021.130643.
SHANGGUAN E B, LI L Q, WU C K, et al. Microemulsion synthesis of 3D flower-like calcium zincate anode materials with superior high-rate and cycling property for advanced zinc-based batteries[J]. Journal of Alloys and Compounds, 2021, 853: doi: 10.1016/j.jallcom.2020.156965.
LI T C, FANG D L, ZHANG J T, et al. Recent progress in aqueous zinc-ion batteries: A deep insight into zinc metal anodes[J]. Journal of Materials Chemistry A, 2021, 9(10): 6013-6028.
CAO P H, ZHOU X Y, WEI A R, et al. Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries[J]. Advanced Functional Materials, 2021, 31(20): doi: 10.1002/adfm.202100398.
HAN D L, WU S C, ZHANG S W, et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems[J]. Small (Weinheim an Der Bergstrasse, Germany), 2020, 16(29): doi: 10.1002/smll.202001736.
YANG H J, CHANG Z, QIAO Y, et al. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries[J]. Angewandte Chemie (International Ed in English), 2020, 59(24): 9377-9381.
LI B, XUE J, LV X, et al. A facile coating strategy for high stability aqueous zinc ion batteries: Porous rutile nano-TiO2 coating on zinc anode[J]. Surface and Coatings Technology, 2021, 421: doi: 10.1016/j.surfcoat.2021.127367.
ZHAO Z M, ZHAO J W, HU Z L, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy & Environmental Science, 2019, 12(6): 1938-1949.
ZHANG F, WANG C G, PAN J, et al. Polypyrrole-controlled plating/stripping for advanced zinc metal anodes[J]. Materials Today Energy, 2020, 17: doi: 10.1016/j.mtener.2020.100443.
DENG C B, XIE X S, HAN J W, et al. A sieve-functional and uniform-porous Kaolin layer toward stable zinc metal anode[J]. Advanced Functional Materials, 2020, 30(21): doi: 10.1002/adfm. 202000599.
ZHOU M, GUO S, FANG G Z, et al. Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte[J]. Journal of Energy Chemistry, 2021, 55: 549-556.
HAN J, EUCHNER H, KUENZEL M, et al. A thin and uniform fluoride-based artificial interphase for the zinc metal anode enabling reversible Zn/MnO2 batteries[J]. ACS Energy Letters, 2021, 6(9): 3063-3071.
LU Q Q, LIU C C, DU Y H, et al. Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16869-16875.
LI T C, LIM Y V, XIE X S, et al. ZnSe modified zinc metal anodes: Toward enhanced zincophilicity and ionic diffusion[J]. Small, 2021, 17(35): doi: 10.1002/smll.202101728.
ZHOU W J, CHEN M F, WANG A R, et al. Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material[J]. Journal of Energy Chemistry, 2021, 52: 377-384.
ZHANG N, CHENG F Y, LIU Y C, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery[J]. Journal of the American Chemical Society, 2016, 138(39): 12894-12901.
SUO L M, BORODIN O, GAO T, et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943.
DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456.
PARK K, YU B C, GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): doi: 10.1002/aenm.201502534.
KAN J Q, XUE H G, MU S L. Effect of inhibitors on Zn-dendrite formation for zinc-polyaniline secondary battery[J]. Journal of Power Sources, 1998, 74(1): 113-116.
GENG M, NORTHWOOD D O. Development of advanced rechargeable Ni/MH and Ni/Zn batteries[J]. International Journal of Hydrogen Energy, 2003, 28(6): 633-636.
XU M, IVEY D G, QU W, et al. Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide[J]. Journal of Power Sources, 2015, 274: 1249-1253.
WILCOX G D, MITCHELL P J. Electrolyte additives for zinc-anoded secondary cells I. Brighteners, levellers and complexants[J]. Journal of Power Sources, 1989, 28(4): 345-359.
GUO X X, ZHANG Z Y, LI J W, et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives[J]. ACS Energy Letters, 2021, 6(2): 395-403.
YAN C, LI H R, CHEN X, et al. Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes[J]. Journal of the American Chemical Society, 2019, 141(23): 9422-9429.
XU R, SHEN X, MA X X, et al. Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface[J]. Angewandte Chemie (International Ed in English), 2021, 60(8): 4215-4220.
HUANG C, ZHAO X, LIU S, et al. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(38): doi: 10.1002/adma.202100445.
BAYAGUUD A, LUO X, FU Y P, et al. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries[J]. ACS Energy Letters, 2020, 5(9): 3012-3020.
SHI J Q, XIA K X, LIU L J, et al. Ultrahigh coulombic efficiency and long-life aqueous Zn anodes enabled by electrolyte additive of acetonitrile[J]. Electrochimica Acta, 2020, 358: doi: 10.1016/j.electacta.2020.136937.
WANG Z F, LI H F, TANG Z J, et al. Hydrogel electrolytes for flexible aqueous energy storage devices[J]. Advanced Functional Materials, 2018, 28(48): doi: 10.1002/adfm.201804560.
WANG X W, WANG F X, WANG L Y, et al. An aqueous rechargeable Zn||Co3O4 Battery with high energy density and good cycling behavior[J]. Advanced Materials, 2016, 28(24): 4904-4911.
TANG Y, LIU C X, ZHU H R, et al. Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode[J]. Energy Storage Materials, 2020, 27: 109-116.
MALAGURSKI I, LEVIC S, PANTIC M, et al. Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites[J]. Carbohydrate Polymers, 2017, 165: 313-321.
LIN X D, ZHOU G D, LIU J P, et al. Bifunctional hydrated gel electrolyte for long-cycling Zn-ion battery with NASICON-type cathode[J]. Advanced Functional Materials, 2021, 31(42): doi: 10.1002/adfm.202105717.
CONG J L, SHEN X, WEN Z P, et al. Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte[J]. Energy Storage Materials, 2021, 35: 586-594.
WANG R, YAO M J, HUANG S, et al. Sustainable dough-based gel electrolytes for aqueous energy storage devices[J]. Advanced Functional Materials, 2021, 31(14): doi: 10.1002/adfm.202009209.
LI J, YU P F, ZHANG S T, et al. Mild synthesis of superadhesive hydrogel electrolyte with low interfacial resistance and enhanced ionic conductivity for flexible zinc ion battery[J]. Journal of Colloid and Interface Science, 2021, 600: 586-593.
HUANG S, ZHU J C, TIAN J L, et al. Recent progress in the electrolytes of aqueous zinc-ion batteries[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2019, 25(64): 14480-14494.
... [41];(b) 具有裸Zn和PANZ@Zn负极的对称电池的电化学阻抗谱(EIS)[67];(c) 循环100圈后,裸Zn负极侧和PANZ@Zn负极的图像[67];(d) 裸Zn 和Zn/In负极在水性ZnSO4 电解液中的示意图[68];(e) 裸Zn和Zn/In负极在浸入ZnSO4 电解液之前和之后的XRD图像[68];(f) 裸Zn和Zn/In对称电池的循环性能[68](a) Schematic the stripping/plating processes of the bare Zn anode and the ZrO2-coated Zn anode[41]; (b) Electrochemical impedance spectra (EIS) of symmetric cells with bare Zn and PANZ@Zn anodes[67]; (c) After the 100th cycle, digital picture of bare Zn anode side and PANZ@Zn side[67]; (d) Schematics of the behaviour of bare Zn and Zn/In anodes in an aqueous ZnSO4 electrolyte[68]; (e) XRD patterns of bare Zn and Zn/In before and after immersion in the aqueous ZnSO4 electrolyte[68]; (f) The cycling performance of bare Zn and Zn/In in symmetric cells[68]Fig. 6
... [41]; (b) Electrochemical impedance spectra (EIS) of symmetric cells with bare Zn and PANZ@Zn anodes[67]; (c) After the 100th cycle, digital picture of bare Zn anode side and PANZ@Zn side[67]; (d) Schematics of the behaviour of bare Zn and Zn/In anodes in an aqueous ZnSO4 electrolyte[68]; (e) XRD patterns of bare Zn and Zn/In before and after immersion in the aqueous ZnSO4 electrolyte[68]; (f) The cycling performance of bare Zn and Zn/In in symmetric cells[68]Fig. 6
(a) Schematic of the seeded Zn plating on the Ag islands patterned on carbon paper[58]; (b) Operando optical microscopy analysis of Zn plating and C-Ag electrodes[58]; (c) Schematic illustration of the fabrication process of the Cu/Zn electrode[48]; (d) The XRD result of Cu/Zn-30d electrode[48]; (e) Cycling performance of Zn||MnO2 and Cu/Zn||MnO2 full cells[48]Fig. 4
... [48];(e) Zn||MnO2 和 Cu/Zn||MnO2 全电池的循环性能[48](a) Schematic of the seeded Zn plating on the Ag islands patterned on carbon paper[58]; (b) Operando optical microscopy analysis of Zn plating and C-Ag electrodes[58]; (c) Schematic illustration of the fabrication process of the Cu/Zn electrode[48]; (d) The XRD result of Cu/Zn-30d electrode[48]; (e) Cycling performance of Zn||MnO2 and Cu/Zn||MnO2 full cells[48]Fig. 4
... [48](a) Schematic of the seeded Zn plating on the Ag islands patterned on carbon paper[58]; (b) Operando optical microscopy analysis of Zn plating and C-Ag electrodes[58]; (c) Schematic illustration of the fabrication process of the Cu/Zn electrode[48]; (d) The XRD result of Cu/Zn-30d electrode[48]; (e) Cycling performance of Zn||MnO2 and Cu/Zn||MnO2 full cells[48]Fig. 4
... [58];(b) Zn电镀和C-Ag电极的光学显微镜分析[58];(c) Cu/Zn电极的制备过程示意图[48];(d) Cu/Zn-30电极的XRD图像[48];(e) Zn||MnO2 和 Cu/Zn||MnO2 全电池的循环性能[48](a) Schematic of the seeded Zn plating on the Ag islands patterned on carbon paper[58]; (b) Operando optical microscopy analysis of Zn plating and C-Ag electrodes[58]; (c) Schematic illustration of the fabrication process of the Cu/Zn electrode[48]; (d) The XRD result of Cu/Zn-30d electrode[48]; (e) Cycling performance of Zn||MnO2 and Cu/Zn||MnO2 full cells[48]Fig. 4
... [58];(c) Cu/Zn电极的制备过程示意图[48];(d) Cu/Zn-30电极的XRD图像[48];(e) Zn||MnO2 和 Cu/Zn||MnO2 全电池的循环性能[48](a) Schematic of the seeded Zn plating on the Ag islands patterned on carbon paper[58]; (b) Operando optical microscopy analysis of Zn plating and C-Ag electrodes[58]; (c) Schematic illustration of the fabrication process of the Cu/Zn electrode[48]; (d) The XRD result of Cu/Zn-30d electrode[48]; (e) Cycling performance of Zn||MnO2 and Cu/Zn||MnO2 full cells[48]Fig. 4
... [58]; (b) Operando optical microscopy analysis of Zn plating and C-Ag electrodes[58]; (c) Schematic illustration of the fabrication process of the Cu/Zn electrode[48]; (d) The XRD result of Cu/Zn-30d electrode[48]; (e) Cycling performance of Zn||MnO2 and Cu/Zn||MnO2 full cells[48]Fig. 4
... [58]; (c) Schematic illustration of the fabrication process of the Cu/Zn electrode[48]; (d) The XRD result of Cu/Zn-30d electrode[48]; (e) Cycling performance of Zn||MnO2 and Cu/Zn||MnO2 full cells[48]Fig. 4
... [60];(b) 在含有2 mol/L ZnSO4 和0.5 mol/L MnSO4 的电解液中,3D Zn负极或平面Zn箔负极的全电池的循环性能[60];(c) 裸锌和Zn@ZnO-3D的形态[62](a) Schematic diagrams of Zn deposition/stripping processes on 3D Zn electrodes and planar Zn foil electrodes[60]; (b) Cycling performance of full cells with 3D Zn anodes or planar Zn foil anodes in the electrolyte containing 2 mol·L-1 ZnSO4 and 0.5 mol·L-1 MnSO4[60]; (c) Morphology of bare Zn and Zn@ZnO-3D[62]Fig. 5
... [60];(c) 裸锌和Zn@ZnO-3D的形态[62](a) Schematic diagrams of Zn deposition/stripping processes on 3D Zn electrodes and planar Zn foil electrodes[60]; (b) Cycling performance of full cells with 3D Zn anodes or planar Zn foil anodes in the electrolyte containing 2 mol·L-1 ZnSO4 and 0.5 mol·L-1 MnSO4[60]; (c) Morphology of bare Zn and Zn@ZnO-3D[62]Fig. 5
... [60]; (b) Cycling performance of full cells with 3D Zn anodes or planar Zn foil anodes in the electrolyte containing 2 mol·L-1 ZnSO4 and 0.5 mol·L-1 MnSO4[60]; (c) Morphology of bare Zn and Zn@ZnO-3D[62]Fig. 5
(a) Schematic diagrams of Zn deposition/stripping processes on 3D Zn electrodes and planar Zn foil electrodes[60]; (b) Cycling performance of full cells with 3D Zn anodes or planar Zn foil anodes in the electrolyte containing 2 mol·L-1 ZnSO4 and 0.5 mol·L-1 MnSO4[60]; (c) Morphology of bare Zn and Zn@ZnO-3D[62]Fig. 5
(a) Schematic the stripping/plating processes of the bare Zn anode and the ZrO2-coated Zn anode[41]; (b) Electrochemical impedance spectra (EIS) of symmetric cells with bare Zn and PANZ@Zn anodes[67]; (c) After the 100th cycle, digital picture of bare Zn anode side and PANZ@Zn side[67]; (d) Schematics of the behaviour of bare Zn and Zn/In anodes in an aqueous ZnSO4 electrolyte[68]; (e) XRD patterns of bare Zn and Zn/In before and after immersion in the aqueous ZnSO4 electrolyte[68]; (f) The cycling performance of bare Zn and Zn/In in symmetric cells[68]Fig. 6
... [67];(d) 裸Zn 和Zn/In负极在水性ZnSO4 电解液中的示意图[68];(e) 裸Zn和Zn/In负极在浸入ZnSO4 电解液之前和之后的XRD图像[68];(f) 裸Zn和Zn/In对称电池的循环性能[68](a) Schematic the stripping/plating processes of the bare Zn anode and the ZrO2-coated Zn anode[41]; (b) Electrochemical impedance spectra (EIS) of symmetric cells with bare Zn and PANZ@Zn anodes[67]; (c) After the 100th cycle, digital picture of bare Zn anode side and PANZ@Zn side[67]; (d) Schematics of the behaviour of bare Zn and Zn/In anodes in an aqueous ZnSO4 electrolyte[68]; (e) XRD patterns of bare Zn and Zn/In before and after immersion in the aqueous ZnSO4 electrolyte[68]; (f) The cycling performance of bare Zn and Zn/In in symmetric cells[68]Fig. 6
... [67]; (c) After the 100th cycle, digital picture of bare Zn anode side and PANZ@Zn side[67]; (d) Schematics of the behaviour of bare Zn and Zn/In anodes in an aqueous ZnSO4 electrolyte[68]; (e) XRD patterns of bare Zn and Zn/In before and after immersion in the aqueous ZnSO4 electrolyte[68]; (f) The cycling performance of bare Zn and Zn/In in symmetric cells[68]Fig. 6
... [67]; (d) Schematics of the behaviour of bare Zn and Zn/In anodes in an aqueous ZnSO4 electrolyte[68]; (e) XRD patterns of bare Zn and Zn/In before and after immersion in the aqueous ZnSO4 electrolyte[68]; (f) The cycling performance of bare Zn and Zn/In in symmetric cells[68]Fig. 6
(a) Schematic the stripping/plating processes of the bare Zn anode and the ZrO2-coated Zn anode[41]; (b) Electrochemical impedance spectra (EIS) of symmetric cells with bare Zn and PANZ@Zn anodes[67]; (c) After the 100th cycle, digital picture of bare Zn anode side and PANZ@Zn side[67]; (d) Schematics of the behaviour of bare Zn and Zn/In anodes in an aqueous ZnSO4 electrolyte[68]; (e) XRD patterns of bare Zn and Zn/In before and after immersion in the aqueous ZnSO4 electrolyte[68]; (f) The cycling performance of bare Zn and Zn/In in symmetric cells[68]Fig. 6
... [68];(f) 裸Zn和Zn/In对称电池的循环性能[68](a) Schematic the stripping/plating processes of the bare Zn anode and the ZrO2-coated Zn anode[41]; (b) Electrochemical impedance spectra (EIS) of symmetric cells with bare Zn and PANZ@Zn anodes[67]; (c) After the 100th cycle, digital picture of bare Zn anode side and PANZ@Zn side[67]; (d) Schematics of the behaviour of bare Zn and Zn/In anodes in an aqueous ZnSO4 electrolyte[68]; (e) XRD patterns of bare Zn and Zn/In before and after immersion in the aqueous ZnSO4 electrolyte[68]; (f) The cycling performance of bare Zn and Zn/In in symmetric cells[68]Fig. 6
... [68](a) Schematic the stripping/plating processes of the bare Zn anode and the ZrO2-coated Zn anode[41]; (b) Electrochemical impedance spectra (EIS) of symmetric cells with bare Zn and PANZ@Zn anodes[67]; (c) After the 100th cycle, digital picture of bare Zn anode side and PANZ@Zn side[67]; (d) Schematics of the behaviour of bare Zn and Zn/In anodes in an aqueous ZnSO4 electrolyte[68]; (e) XRD patterns of bare Zn and Zn/In before and after immersion in the aqueous ZnSO4 electrolyte[68]; (f) The cycling performance of bare Zn and Zn/In in symmetric cells[68]Fig. 6
... [68]; (e) XRD patterns of bare Zn and Zn/In before and after immersion in the aqueous ZnSO4 electrolyte[68]; (f) The cycling performance of bare Zn and Zn/In in symmetric cells[68]Fig. 6
... [81];(b) 具有不同电解液的Zn||Zn对称电池曲线[81];(c) 锌箔的循环后照片[81];(d) 不同浓度Zn(BF4)2 电解液溶剂的凝固点[82];(e) 不同浓度的Zn(CF3SO3)2 电解液的黏度和离子电导率[83];(f) 不同浓度Zn(CF3SO3)2 电解液的CE曲线[83](a) Rate performances[81]; (b) GCD curves of Zn||Zn symmetric cells with different electrolyte salt[81]; (c) Characterization results of the Zn foils[81]; (d) The freezing points of different concentrations of Zn(BF4)2 electrolyte solvent[82]; (e) Characterization of aqueous Zn(CF3SO3)2 electrolyte with different concentrations (1-4 M)viscosity and ionic conductivity[83]; (f) CE curve of different concentration of Zn (CF3SO3)2 electrolyte[83]Fig. 7
... [81];(c) 锌箔的循环后照片[81];(d) 不同浓度Zn(BF4)2 电解液溶剂的凝固点[82];(e) 不同浓度的Zn(CF3SO3)2 电解液的黏度和离子电导率[83];(f) 不同浓度Zn(CF3SO3)2 电解液的CE曲线[83](a) Rate performances[81]; (b) GCD curves of Zn||Zn symmetric cells with different electrolyte salt[81]; (c) Characterization results of the Zn foils[81]; (d) The freezing points of different concentrations of Zn(BF4)2 electrolyte solvent[82]; (e) Characterization of aqueous Zn(CF3SO3)2 electrolyte with different concentrations (1-4 M)viscosity and ionic conductivity[83]; (f) CE curve of different concentration of Zn (CF3SO3)2 electrolyte[83]Fig. 7
... [81];(d) 不同浓度Zn(BF4)2 电解液溶剂的凝固点[82];(e) 不同浓度的Zn(CF3SO3)2 电解液的黏度和离子电导率[83];(f) 不同浓度Zn(CF3SO3)2 电解液的CE曲线[83](a) Rate performances[81]; (b) GCD curves of Zn||Zn symmetric cells with different electrolyte salt[81]; (c) Characterization results of the Zn foils[81]; (d) The freezing points of different concentrations of Zn(BF4)2 electrolyte solvent[82]; (e) Characterization of aqueous Zn(CF3SO3)2 electrolyte with different concentrations (1-4 M)viscosity and ionic conductivity[83]; (f) CE curve of different concentration of Zn (CF3SO3)2 electrolyte[83]Fig. 7
... [81]; (b) GCD curves of Zn||Zn symmetric cells with different electrolyte salt[81]; (c) Characterization results of the Zn foils[81]; (d) The freezing points of different concentrations of Zn(BF4)2 electrolyte solvent[82]; (e) Characterization of aqueous Zn(CF3SO3)2 electrolyte with different concentrations (1-4 M)viscosity and ionic conductivity[83]; (f) CE curve of different concentration of Zn (CF3SO3)2 electrolyte[83]Fig. 7
... [81]; (c) Characterization results of the Zn foils[81]; (d) The freezing points of different concentrations of Zn(BF4)2 electrolyte solvent[82]; (e) Characterization of aqueous Zn(CF3SO3)2 electrolyte with different concentrations (1-4 M)viscosity and ionic conductivity[83]; (f) CE curve of different concentration of Zn (CF3SO3)2 electrolyte[83]Fig. 7
... [81]; (d) The freezing points of different concentrations of Zn(BF4)2 electrolyte solvent[82]; (e) Characterization of aqueous Zn(CF3SO3)2 electrolyte with different concentrations (1-4 M)viscosity and ionic conductivity[83]; (f) CE curve of different concentration of Zn (CF3SO3)2 electrolyte[83]Fig. 7
(a) Rate performances[81]; (b) GCD curves of Zn||Zn symmetric cells with different electrolyte salt[81]; (c) Characterization results of the Zn foils[81]; (d) The freezing points of different concentrations of Zn(BF4)2 electrolyte solvent[82]; (e) Characterization of aqueous Zn(CF3SO3)2 electrolyte with different concentrations (1-4 M)viscosity and ionic conductivity[83]; (f) CE curve of different concentration of Zn (CF3SO3)2 electrolyte[83]Fig. 7
... [82]; (e) Characterization of aqueous Zn(CF3SO3)2 electrolyte with different concentrations (1-4 M)viscosity and ionic conductivity[83]; (f) CE curve of different concentration of Zn (CF3SO3)2 electrolyte[83]Fig. 7
(a) Rate performances[81]; (b) GCD curves of Zn||Zn symmetric cells with different electrolyte salt[81]; (c) Characterization results of the Zn foils[81]; (d) The freezing points of different concentrations of Zn(BF4)2 electrolyte solvent[82]; (e) Characterization of aqueous Zn(CF3SO3)2 electrolyte with different concentrations (1-4 M)viscosity and ionic conductivity[83]; (f) CE curve of different concentration of Zn (CF3SO3)2 electrolyte[83]Fig. 7
... [83](a) Rate performances[81]; (b) GCD curves of Zn||Zn symmetric cells with different electrolyte salt[81]; (c) Characterization results of the Zn foils[81]; (d) The freezing points of different concentrations of Zn(BF4)2 electrolyte solvent[82]; (e) Characterization of aqueous Zn(CF3SO3)2 electrolyte with different concentrations (1-4 M)viscosity and ionic conductivity[83]; (f) CE curve of different concentration of Zn (CF3SO3)2 electrolyte[83]Fig. 7
... [92];(b) Zn负极在含或不含添加剂的电解液中循环后的表面拉曼光谱[92];(c) 浸泡在水和电解液中的锌箔XRD图像[95];(d) 在Sac/ZnSO4 和ZnSO4 电解液中循环的锌沉积示意图[95];(e) 不同电解液中Zn||MnO2 和3D-Zn||MnO2 的循环性能和库仑效率比较[96](a) Schematic illustrations of morphology evolution for Zn foils with different electrolytes during Zn stripping/plating cycling[92]; (b) Raman spectra of Zn anode surface after long cycling process with or without additives[92]; (c) The XRD patterns of pristine Zn plate, Zn plate soaked in water, and Zn plate soaked in Sac/water[95]; (d) The Schematic diagrams for Zn deposition cycled in Sac/ZnSO4 and ZnSO4 electrolyte[95]; (e) Cycling performance and CE comparison of Zn||MnO2 and 3D-Zn||MnO2 batteries in the different electrolytes[96]Fig. 8
... [92];(c) 浸泡在水和电解液中的锌箔XRD图像[95];(d) 在Sac/ZnSO4 和ZnSO4 电解液中循环的锌沉积示意图[95];(e) 不同电解液中Zn||MnO2 和3D-Zn||MnO2 的循环性能和库仑效率比较[96](a) Schematic illustrations of morphology evolution for Zn foils with different electrolytes during Zn stripping/plating cycling[92]; (b) Raman spectra of Zn anode surface after long cycling process with or without additives[92]; (c) The XRD patterns of pristine Zn plate, Zn plate soaked in water, and Zn plate soaked in Sac/water[95]; (d) The Schematic diagrams for Zn deposition cycled in Sac/ZnSO4 and ZnSO4 electrolyte[95]; (e) Cycling performance and CE comparison of Zn||MnO2 and 3D-Zn||MnO2 batteries in the different electrolytes[96]Fig. 8
... [92]; (b) Raman spectra of Zn anode surface after long cycling process with or without additives[92]; (c) The XRD patterns of pristine Zn plate, Zn plate soaked in water, and Zn plate soaked in Sac/water[95]; (d) The Schematic diagrams for Zn deposition cycled in Sac/ZnSO4 and ZnSO4 electrolyte[95]; (e) Cycling performance and CE comparison of Zn||MnO2 and 3D-Zn||MnO2 batteries in the different electrolytes[96]Fig. 8
... [92]; (c) The XRD patterns of pristine Zn plate, Zn plate soaked in water, and Zn plate soaked in Sac/water[95]; (d) The Schematic diagrams for Zn deposition cycled in Sac/ZnSO4 and ZnSO4 electrolyte[95]; (e) Cycling performance and CE comparison of Zn||MnO2 and 3D-Zn||MnO2 batteries in the different electrolytes[96]Fig. 8
(a) Schematic illustrations of morphology evolution for Zn foils with different electrolytes during Zn stripping/plating cycling[92]; (b) Raman spectra of Zn anode surface after long cycling process with or without additives[92]; (c) The XRD patterns of pristine Zn plate, Zn plate soaked in water, and Zn plate soaked in Sac/water[95]; (d) The Schematic diagrams for Zn deposition cycled in Sac/ZnSO4 and ZnSO4 electrolyte[95]; (e) Cycling performance and CE comparison of Zn||MnO2 and 3D-Zn||MnO2 batteries in the different electrolytes[96]Fig. 8
... [95];(e) 不同电解液中Zn||MnO2 和3D-Zn||MnO2 的循环性能和库仑效率比较[96](a) Schematic illustrations of morphology evolution for Zn foils with different electrolytes during Zn stripping/plating cycling[92]; (b) Raman spectra of Zn anode surface after long cycling process with or without additives[92]; (c) The XRD patterns of pristine Zn plate, Zn plate soaked in water, and Zn plate soaked in Sac/water[95]; (d) The Schematic diagrams for Zn deposition cycled in Sac/ZnSO4 and ZnSO4 electrolyte[95]; (e) Cycling performance and CE comparison of Zn||MnO2 and 3D-Zn||MnO2 batteries in the different electrolytes[96]Fig. 8
... [95]; (d) The Schematic diagrams for Zn deposition cycled in Sac/ZnSO4 and ZnSO4 electrolyte[95]; (e) Cycling performance and CE comparison of Zn||MnO2 and 3D-Zn||MnO2 batteries in the different electrolytes[96]Fig. 8
(a) Schematic illustrations of morphology evolution for Zn foils with different electrolytes during Zn stripping/plating cycling[92]; (b) Raman spectra of Zn anode surface after long cycling process with or without additives[92]; (c) The XRD patterns of pristine Zn plate, Zn plate soaked in water, and Zn plate soaked in Sac/water[95]; (d) The Schematic diagrams for Zn deposition cycled in Sac/ZnSO4 and ZnSO4 electrolyte[95]; (e) Cycling performance and CE comparison of Zn||MnO2 and 3D-Zn||MnO2 batteries in the different electrolytes[96]Fig. 8
... [100];(b) Alg-Na和Alg-Zn的分子结构[100];(c) 循环前后锌箔的XRD图像[100];(d) 具有不同盐浓度的HGE的EIS[102];(e) 具有不同浓度PAMPSZn水凝胶电解质的Zn||Zn对称电池的EIS图像[103](a) Photographs of the Alg-Zn electrolyte[100]; (b) The molecular formulas of Alg-Na and Alg-Zn[100]; (c) XRD patterns of the Zn foil before and after cycles[100]; (d) EIS of the HGE with different salt concentrations[102]; (e) EIS spectra of Zn||Zn symmetric cells with different concentrations of PAMPSZn hydrogel electrolyte[103]Fig. 9
... [100];(c) 循环前后锌箔的XRD图像[100];(d) 具有不同盐浓度的HGE的EIS[102];(e) 具有不同浓度PAMPSZn水凝胶电解质的Zn||Zn对称电池的EIS图像[103](a) Photographs of the Alg-Zn electrolyte[100]; (b) The molecular formulas of Alg-Na and Alg-Zn[100]; (c) XRD patterns of the Zn foil before and after cycles[100]; (d) EIS of the HGE with different salt concentrations[102]; (e) EIS spectra of Zn||Zn symmetric cells with different concentrations of PAMPSZn hydrogel electrolyte[103]Fig. 9
... [100];(d) 具有不同盐浓度的HGE的EIS[102];(e) 具有不同浓度PAMPSZn水凝胶电解质的Zn||Zn对称电池的EIS图像[103](a) Photographs of the Alg-Zn electrolyte[100]; (b) The molecular formulas of Alg-Na and Alg-Zn[100]; (c) XRD patterns of the Zn foil before and after cycles[100]; (d) EIS of the HGE with different salt concentrations[102]; (e) EIS spectra of Zn||Zn symmetric cells with different concentrations of PAMPSZn hydrogel electrolyte[103]Fig. 9
... [100]; (b) The molecular formulas of Alg-Na and Alg-Zn[100]; (c) XRD patterns of the Zn foil before and after cycles[100]; (d) EIS of the HGE with different salt concentrations[102]; (e) EIS spectra of Zn||Zn symmetric cells with different concentrations of PAMPSZn hydrogel electrolyte[103]Fig. 9
... [100]; (c) XRD patterns of the Zn foil before and after cycles[100]; (d) EIS of the HGE with different salt concentrations[102]; (e) EIS spectra of Zn||Zn symmetric cells with different concentrations of PAMPSZn hydrogel electrolyte[103]Fig. 9
... [100]; (d) EIS of the HGE with different salt concentrations[102]; (e) EIS spectra of Zn||Zn symmetric cells with different concentrations of PAMPSZn hydrogel electrolyte[103]Fig. 9
(a) Photographs of the Alg-Zn electrolyte[100]; (b) The molecular formulas of Alg-Na and Alg-Zn[100]; (c) XRD patterns of the Zn foil before and after cycles[100]; (d) EIS of the HGE with different salt concentrations[102]; (e) EIS spectra of Zn||Zn symmetric cells with different concentrations of PAMPSZn hydrogel electrolyte[103]Fig. 9
(a) Photographs of the Alg-Zn electrolyte[100]; (b) The molecular formulas of Alg-Na and Alg-Zn[100]; (c) XRD patterns of the Zn foil before and after cycles[100]; (d) EIS of the HGE with different salt concentrations[102]; (e) EIS spectra of Zn||Zn symmetric cells with different concentrations of PAMPSZn hydrogel electrolyte[103]Fig. 9