固态聚合物电解质(solid polymer electrolytes,SPEs)具有不易泄漏、易加工、抑制锂枝晶生长等优点,能提高固态金属锂电池(solid-state lithium metal batteries,SSLMBs)的循环寿命和安全性。导电锂盐作为SPEs的必要组分之一,不仅能够为其离子输运提供锂离子源,而且能够在电极表面发生化学或电化学反应,参与电极/SPE界面膜的构建。因此,导电锂盐的分子结构对于调控SPEs的基础物理和电化学性质及其与电极材料的界面性能有着重要的影响。结合本团队在SPEs导电锂盐领域的相关研究工作,本文主要介绍全氟代和部分氟代磺酰亚胺锂盐作为SPEs导电盐的研究进展,并探讨了SPEs导电锂盐的未来发展方向。
关键词:固态金属锂电池
;
固态聚合物电解质
;
导电锂盐
;
磺酰亚胺
Abstract
Solid polymer electrolytes (SPEs) has several distinct advantages, including no-leakage, ease of use, and suppression of lithium dendrite growth, all of which are important for improving the cycling life and safety of solid-state lithium metal batteries. Conducting lithium salts, as one of the most essential components of SPEs, could not only act as lithium-ion sources for the transportation of ionic species but also participate in the formation/construction of electrode/SPEs interphases. As a result, the chemical structures of lithium salts are critical for regulating the physical and electrochemical properties of SPEs, as well as their interfacial properties with electrode materials. This work focuses mainly on the research progress of conducting lithium salts, including perfluorinated and partially fluorinated sulfonimide salts, based on our experience in the field of SPEs. Future directions in conducting salt design for SPEs are also discussed.
图1
(a) 锂离子电池和二次金属锂电池的原理图;(b) 固体聚合物电解质(SPEs)在可充电锂电池中的研究趋势演变图(数据由Scifinder在2022年2月17日通过相关主题,关键词搜索“solid state batteries”、“solid polymer electrolytes”获得)
Fig. 1
(a) Schematic representation of Li-ion batteries and rechargeable Li metal batteries; (b) Evolution of research trends (i.e., number of publications) of SPEs in rechargeable lithium batteries. Data are obtained from Scifinder on the 17th February 2022 via relevant topic followed by keyword search: “solid state batteries” and “solid polymer electrolytes”
1972年,Meussdorffer等[45]合成了一种具有磺酰亚胺(—SO2—N(-)—SO2—)中心的负电荷共轭离域的阴离子,即双(三氟甲基磺酰)亚胺阴离子{[(CF3SO2)2N]-,TFSI-}。该阴离子的负电荷通过磺酰亚胺结构的离域作用分散到4个氧原子、2个硫原子以及1个中心氮原子上。同时,磺酰亚胺结构与两个强吸电子基团(三氟甲基)相连,使负电荷进一步离域化。基于此,1983年,Armand等[46]提出将其锂盐双(三氟甲基磺酰)亚胺锂{[(CF3SO2)2N]Li,LiTFSI}作为SPEs导电锂盐,应用于SSLMBs体系。TFSI-阴离子具有较高的结构柔性,不同的构象异构体之间易于相互转换,有助于降低聚合物链段之间的分子间相互作用强度[47]。与其他锂离子导电SPEs相比,基于LiTFSI的SPEs表现出较高的离子电导率。此外,LiTFSI还具有较高的化学稳定性、热稳定性以及较低的腐蚀性和毒性。得益于上述优点,LiTFSI作为SPEs的导电锂盐,在近30年间获得了广泛的关注和研究[48-54]。特别是,基于LiTFSI/PEO电解质的SSLMBs已作为动力电源和储能装置在电动汽车(Bluecar®)和储能电站(Bluestorage®)等领域中获得了示范性应用[55]。然而,在极性非质子溶剂中(如碳酸酯),全氟代阴离子(TFSI-)基本不参与溶剂化,因而其SPE的阴离子迁移占据主导地位,锂离子迁移数较低(TLi+<0.5),造成浓差极化[56-57]。此外,LiTFSI还原电位较低[58](<0.5 V vs. Li/Li+),难以在金属锂表面发生电化学还原以参与固态电解质界面(solid electrolyte interphase,SEI)膜的构建,因而LiTFSI/PEO电解质与金属锂的界面稳定性较差,导致其SSLMBs的循环和倍率性能不足[59]。
Fig. 2
Chemical structures of fluorinated sulfonimide conducting lithium salts
1962年,Appel等[64]报道了双(氟磺酰)亚胺{[(FSO2)2N]H,HFSI}的合成方法。1995年,Armand等[65]首先将其应用于电池领域。基于LiFSI的有机非水液态电解质表现出优异的离子电导率,并且能够有效地参与电极/电解质界面的建立[66]。2014年,本文作者团队[25]报道了LiFSI/PEO体系的物理及电化学性质。相较于传统的LiTFSI/PEO电解质,LiFSI/PEO显示出更低的玻璃化转变温度{Tg=-45 ℃(LiFSI/PEO) vs. -36 ℃(LiTFSI/PEO);[EO]/[Li]=20,EO单元与锂离子的摩尔比,余同}和更高的离子电导率{80 ℃,>10-3 S/cm(LiFSI/PEO) vs. 1×10-3 S/cm(LiTFSI/PEO),[EO]/[Li]=20}。密度泛函理论(density functional theory,DFT)计算结果表明,由于FSO2-基团更小的空间位阻,氟磺酰亚胺类导电锂盐具有更高的结构柔性,增强了该类阴离子的增塑能力[25]。
此外,基于LiFSI的SPEs的金属锂对称电池在高温搁置过程中界面阻抗更加稳定,电池恒电流循环寿命与基于LiTFSI/PEO的电池相比得到有效的增长[如253 h(LiFSI/PEO) vs. 55 h(LiTFSI/PEO)][21]。研究结果表明,LiFSI的还原电位(>1.0 V vs. Li/Li+)显著高于LiTFSI(<0.5 V vs. Li/Li+),并且能够在金属锂表面形成富含无机锂盐氟化锂(LiF)的固体电解质界面[如图3(a)所示][58]。这不仅有效减缓电解质与金属锂的界面副反应,而且一定程度抑制了全固态锂/硫电池中多硫化物的循环穿梭,提高SSLMBs的库仑效率[67][如图3(b)所示]。
Fig. 3
(a) Chemical simulation of the electrochemical stabilities of LiFTFSI, LiFSI and LiTFSI salts. Reproduced with permission from Ref.[58]. Copyright 2018 American Chemical Society; (b) Schematic illustration of the impermeable SEI form in LiFSI/PEO to protect lithium metal from the side reactions with polysulfide in lithium-sulfur batteries. Reproduced with permission from Ref.[67]. Copyright 2017 American Chemical Society; (c) Schematic illustration of the enhanced interfacial stability by utilizing LiFSI as additive for LiTCM/PEO. Reproduced with permission from Ref.[74]. Copyright 2019 Elsevier
Fig. 4
(a) Design strategy of the anion with extremely delocalized negative charge. Reproduced with permission from Ref.[78]. Copyright 2021 John Wiley & Sons, Inc.; (b) Li+ ion only (σLi+) conductivity of LiX/PEO (X=sTFSI, BETI, TFSI and FSI) at 80 ℃. Reproduced with permission from Ref.[78]. Copyright 2021 John Wiley & Sons, Inc.; (c) Design strategy of the anion with extremely delocalized negative charge in the single Li-ion conductors
2 部分氟代磺酰亚胺导电锂盐
全氟代磺酰亚胺导电锂盐具有较高的氧化电位(>4.5 V vs. Li/Li+),将其引入到SPE体系中,显著提升了SPEs的离子传输性质或电极/电解质的界面性能。然而,该类SPEs为典型的双离子导体体系,具有较低的锂离子迁移数(TLi+<0.5)[25]。充放电过程中,由于阴、阳离子差异化的离子迁移率,电极界面存在严重的浓差极化,导致锂枝晶的生成以及较差的电化学性能。
Fig. 6
(a) Lithium-ion conductivities of the state-of-art SPEs. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (b) Schematic illustration of the interaction between EFA-anion and PEO. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (c) Lithium-ion conductivities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (d) Schematic illustration on the anodic stabilities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (e) Schematic illustration of blocking the shuttle effect of polysulfide in LiDFTFSI/PEO electrolyte. Reproduced with permission from Ref.[77]. Copyright 2019 Elsevier
WU J Y, LIU P, HU Y S, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4): 443-453.
QIAO L X, JUDEZ X, ROJO T, et al. Review—Polymer electrolytes for sodium batteries[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab7aao.
DU A B, CHAI J C, ZHANG J J, et al. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends[J]. Energy Storage Science and Technology, 2016, 5(5): 627-648.
ZHANG B K, YANG L Y, LI S N, et al. Progress of lithium-ion transport mechanism in solid-state electrolytes[J]. Journal of Electrochemistry, 2021, 27(3): 269-277.
LIANG D Y, BAO T T, GAO T H, et al. Research progress of lithium ion battery solid-electrolyte interface(SEI)[J]. Energy Storage Science and Technology, 2018, 7(3): 418-423.
LING Z J, HE X M, LI J J, et al. Recent advances of all-solid-state polymer electrolyte for Li-ion batteries[J]. Progress in Chemistry, 2006, 18(4): 459-466.
ZOU W H, FAN Y, ZHANG Y Y, et al. Research progress on room-temperature polymer-based electrolytes for safe solid-state lithium batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5029-5044.
LIU D F. Characterizations of lithium perfluoro-alkoxy (-phenoxy) sulfonylimides for solid polymer electrolytes[D]. Wuhan: Huazhong University of Science and Technology, 2005.
HE X M, PU W H, WANG L, et al. Plastic crystals: An effective ambient temperature all-solid-state electrolyte for lithium batteries[J]. Progress in Chemistry, 2006, 18(1): 24-29.
BRESSER D, HOSOI K, HOWELL D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA[J]. Journal of Power Sources, 2018, 382: 176-178.
XUE Z G, HE D, XIE X L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253.
HALLINAN D T Jr, VILLALUENGA I, BALSARA N P. Polymer and composite electrolytes[J]. MRS Bulletin, 2018, 43(10): 759-767.
ZHANG H. Solid polymer electrolytes based on bis(fluorosulfonyl)imide anion: Synthesis, characterization, and properties[D]. Wuhan: Huazhong University of Science and Technology, 2015.
WU X, ZHOU L, XUE Z M. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts[J]. Energy Storage Science and Technology, 2021, 10(1): 96-103.
ZHANG H, FENG W F, ZHOU Z B, et al. Composite electrolytes of lithium salt/polymeric ionic liquid with bis(fluorosulfonyl)imide[J]. Solid State Ionics, 2014, 256: 61-67.
ZHANG H, LI L, FENG W F, et al. Polymeric ionic liquids based on ether functionalized ammoniums and perfluorinated sulfonimides[J]. Polymer, 2014, 55(16): 3339-3348.
ZHANG H, LIU C Y, ZHENG L P, et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte[J]. Electrochimica Acta, 2014, 133: 529-538.
ZHANG H, LIU C Y, ZHENG L P, et al. Solid polymer electrolyte comprised of lithium salt/ether functionalized ammonium-based polymeric ionic liquid with bis(fluorosulfonyl)imide[J]. Electrochimica Acta, 2015, 159: 93-101.
ZHAO C Z, YUAN H, LU Y, et al. Review on interfaces in solid-state lithium metal anodes[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4986-4997.
HE X, NI Y X, HOU Y P, et al. Insights into the ionic conduction mechanism of quasi-solid polymer electrolytes through multispectral characterization[J]. Angewandte Chemie International Edition, 2021, 60(42): 22672-22677.
QIAO L X, CUI Z L, CHEN B B, et al. A promising bulky anion based lithium borate salt for lithium metal batteries[J]. Chemical Science, 2018, 9(14): 3451-3458.
WANG C, WANG T, WANG L L, et al. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery[J]. Advanced Science, 2019, 6(22): doi: 10.1002/advs.201901036.
SHANGGUAN X H, XU G J, CUI Z L, et al. Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium-metal batteries[J]. Small, 2019, 15(16): doi: 10.1002/smll.201900269.
WANG Q L, CUI Z L, ZHOU Q, et al. A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries[J]. Energy Storage Materials, 2020, 25: 756-763.
ZHOU M H, LIU R L, JIA D Y, et al. Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultralong-life and dendrite-free lithium-metal batteries[J]. Advanced Materials, 2021, 33(29): doi: 10.1002/adma.202100943.
DESHPANDE V K, SINGH K. Effect of LiX(X=F, Cl, Br, I) and Na2SO4 on the electrical conducticity of Li2SO4: Li2CO3 eutectic[J]. Solid State Ionics, 1983, 8(4): 319-322.
NEWMAN G H, FRANCIS R W, GAINES L H, et al. Hazard investigations of LiClO4/dioxolane electrolyte[J]. Journal of the Electrochemical Society, 1980, 127(9): 2025-2027.
ROBITAILLE C D, FAUTEUX D. Phase diagrams and conductivity characterization of some PEO-LiX electrolytes[J]. Journal of the Electrochemical Society, 1986, 133(2): 315-325.
BANDARA L R A K, DISSANAYAKE M A K L, MELLANDER B E. Ionic conductivity of plasticized(PEO)-LiCF3SO3 electrolytes[J]. Electrochimica Acta, 1998, 43(10/11): 1447-1451.
WESTON J E, STEELE B C H. Thermal history—conductivity relationship in lithium salt-poly (ethylene oxide) complex polymer electrolytes[J]. Solid State Ionics, 1981, 2(4): 347-354.
ANGELL C A, LIU C, SANCHEZ E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity[J]. Nature, 1993, 362(6416): 137-139.
CHEN B B, ZHAO J W, MA J, et al. Relationship of ion transport and pressure in PEO/LITFSI solid electrolytes[J]. Energy Storage Science and Technology, 2018, 7(3): 431-436.
CHEN D D, HUANG S, ZHONG L, et al. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture[J]. Advanced Functional Materials, 2020, 30(7): doi: 10.1002/adfm.201907717.
ZHOU Q, MA J, DONG S M, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials, 2019, 31(50): doi: 10.1002/adma.201902029.
MAUREL A, ARMAND M, GRUGEON S, et al. Poly(ethylene oxide)-LiTFSI solid polymer electrolyte filaments for fused deposition modeling three-dimensional printing[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab7c38.
WANG C, ZHANG H R, DONG S M, et al. High polymerization conversion and stable high-voltage chemistry underpinning an in situ formed solid electrolyte[J]. Chemistry of Materials, 2020, 32(21): 9167-9175.
WEN B, DENG Z, TSAI P C, et al. Ultrafast ion transport at a cathode-electrolyte interface and its strong dependence on salt solvation[J]. Nature Energy, 2020, 5(8): 578-586.
XI G, XIAO M, WANG S J, et al. Polymer-based solid electrolytes: Material selection, design, and application[J]. Advanced Functional Materials, 2021, 31(9): doi: 10.1002/adfm.202007598.
ZHANG H, ARMAND M. History of solid polymer electrolyte-based solid-state lithium metal batteries: A personal account[J]. Israel Journal of Chemistry, 2021, 61(1/2): 94-100.
GORECKI W, ROUX C, CLÉMANCEY M, et al. NMR and conductivity study of polymer electrolytes in the imide family: P(EO)/Li[N(SO2CnF2n+1)(SO2CmF2m+1)[J]. ChemPhysChem, 2002, 3(7): 620-625.
ZHANG H, LI C M, PISZCZ M, et al. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives[J]. Chemical Society Reviews, 2017, 46(3): 797-815.
ESHETU G G, JUDEZ X, LI C M, et al. Ultrahigh performance all solid-state lithium sulfur batteries: Salt anion's chemistry-induced anomalous synergistic effect[J]. Journal of the American Chemical Society, 2018, 140(31): 9921-9933.
TONG B, WANG P, MA Q, et al. Lithium fluorinated sulfonimide-based solid polymer electrolytes for Li || LiFePO4 cell: The impact of anionic structure[J]. Solid State Ionics, 2020, 358: doi: 10.1016/j.ssi.2020.115519.
ZHANG H, FENG W F, NIE J, et al. Recent progresses on electrolytes of fluorosulfonimide anions for improving the performances of rechargeable Li and Li-ion battery[J]. Journal of Fluorine Chemistry, 2015, 174: 49-61.
HOWELLS R D, LAMANNA W M, FANTA A D, et al. Preparation of bis (fluoroalkylenesulfonyl) imides and (fluoroalkysulfony) (fluorosulfonyl) imides: US5874616[P]. 1999-02-23.
HAN H B, ZHOU Y X, LIU K, et al. Efficient preparation of (fluorosulfonyl) (pentafluoroethanesulfonyl)imide and its alkali salts[J]. Chemistry Letters, 2010, 39(5): 472-474.
HAN H B, GUO J, ZHANG D J, et al. Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells[J]. Electrochemistry Communications, 2011, 13(3): 265-268.
HAN H B, ZHOU S S, ZHANG D J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196(7): 3623-3632.
JUDEZ X, ZHANG H, LI C M, et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li-S cell[J]. The Journal of Physical Chemistry Letters, 2017, 8(9): 1956-1960.
ZHENG L P, ZHANG H, CHENG P F, et al. Li [(FSO2)(n-C4F9SO2)N]versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis[J]. Electrochimica Acta, 2016, 196: 169-188.
FANG Z, MA Q, LIU P, et al. Novel concentrated Li [(FSO2)(n-C4 F9 SO2)N]-based ether electrolyte for superior stability of metallic lithium anode[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4282-4289.
TONG B, HUANG J, ZHOU Z B, et al. The salt matters: Enhanced reversibility of Li-O2 batteries with a Li [(CF3SO2)(n-C4F9SO2)N]-based electrolyte[J]. Advanced Materials, 2018, 30(1): doi: 10.1002/adma.201704841.
TONG B, WANG J W, LIU Z J, et al. (CH3)3Si-N [(FSO2)(n-C4F9SO2)]: An additive for dendrite-free lithium metal anode[J]. Journal of Power Sources, 2018, 400: 225-231.
ZHOU S, HAN H, NIE J, et al. Improving the high-temperature resilience of LiMn2O4 based batteries: LiFNFSI an effective salt[J]. Journal of The Electrochemical Society, 2012, 159 (8): A1158-A1164.
SONG Z Y, WANG X X, WU H, et al. Bis(fluorosulfonyl)imide-based electrolyte for rechargeable lithium batteries: A perspective[J]. Journal of Power Sources Advances, 2022, 14: doi:10.1016/j.powera.2022.100088.
SANTIAGO A, JUDEZ X, CASTILLO J, et al. Improvement of lithium metal polymer batteries through a small dose of fluorinated salt[J]. The Journal of Physical Chemistry Letters, 2020, 11(15): 6133-6138.
GARLYAUSKAYTE R Y, BEZDUDNY A V, MICHOT C, et al. Efficient synthesis of N-(trifluoromethylsulfonyl)trifluoromethanesulfonimidoyl fluoride-the key agent in the preparation of compounds with superstrong electron-withdrawing groups and strong acidic properties[J]. J Chem Soc, Perkin Trans 1, 2002(16): 1887-1889.
GARLYAUSKAYTE R Y, CHERNEGA A N, MICHOT C, et al. Synthesis of new organic super acids—N-(trifluoromethylsulfonyl)imino derivatives of trifluoromethanesulfonic acid and bis(trifluoromethylsulfonyl)imide[J]. Organic & Biomolecular Chemistry, 2005, 3(12): 2239.
ZHANG H, SONG Z Y, YUAN W M, et al. Impact of negative charge delocalization on the properties of solid polymer electrolytes[J]. ChemElectr℃hem, 2021, 8(7): 1322-1328.
ZHANG H, HAN H B, CHENG X R, et al. Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2015, 296: 142-149.
MA Q, ZHANG H, ZHOU C W, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie International Edition, 2016, 55(7): 2521-2525.
MCLIN M G, ANGELL C A. Frequency-dependent conductivity, relaxation times, and the conductivity/viscosity coupling problem, in polymer-electrolyte solutions: LiClO4 and NaCF3SO3 in PPO 4000[J]. Solid State Ionics, 1992, 53/54/55/56: 1027-1036.
ANGELL C A, FAN J, LIU C L, et al. Li-conducting ionic rubbers for lithium battery and other applications[J]. Solid State Ionics, 1994, 69(3/4): 343-353.
FORSYTH M, SUN J Z, MACFARLANE D R, et al. Compositional dependence of free volume in PAN/LiCF3SO3 polymer-in-salt electrolytes and the effect on ionic conductivity[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(2): 341-350.
WRIGHT P V. Developments in polymer electrolytes for lithium batteries[J]. MRS Bulletin, 2002, 27(8): 597-602.
ZHANG H, CHEN F F, LAKUNTZA O, et al. Suppressed mobility of negative charges in polymer electrolytes with an ether-functionalized anion[J]. Angewandte Chemie International Edition, 2019, 58(35): 12070-12075.
ZHANG H, OTEO U, ZHU H J, et al. Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion[J]. Angewandte Chemie International Edition, 2019, 58(23): 7829-7834.
QIAO L X, OTEO U, ZHANG Y, et al. Trifluoromethyl-free anion for highly stable lithium metal polymer batteries[J]. Energy Storage Materials, 2020, 32: 225-233.
... 此外,基于LiFSI的SPEs的金属锂对称电池在高温搁置过程中界面阻抗更加稳定,电池恒电流循环寿命与基于LiTFSI/PEO的电池相比得到有效的增长[如253 h(LiFSI/PEO) vs. 55 h(LiTFSI/PEO)][21].研究结果表明,LiFSI的还原电位(>1.0 V vs. Li/Li+)显著高于LiTFSI(<0.5 V vs. Li/Li+),并且能够在金属锂表面形成富含无机锂盐氟化锂(LiF)的固体电解质界面[如图3(a)所示][58].这不仅有效减缓电解质与金属锂的界面副反应,而且一定程度抑制了全固态锂/硫电池中多硫化物的循环穿梭,提高SSLMBs的库仑效率[67][如图3(b)所示]. ...
1
... 此外,基于LiFSI的SPEs的金属锂对称电池在高温搁置过程中界面阻抗更加稳定,电池恒电流循环寿命与基于LiTFSI/PEO的电池相比得到有效的增长[如253 h(LiFSI/PEO) vs. 55 h(LiTFSI/PEO)][21].研究结果表明,LiFSI的还原电位(>1.0 V vs. Li/Li+)显著高于LiTFSI(<0.5 V vs. Li/Li+),并且能够在金属锂表面形成富含无机锂盐氟化锂(LiF)的固体电解质界面[如图3(a)所示][58].这不仅有效减缓电解质与金属锂的界面副反应,而且一定程度抑制了全固态锂/硫电池中多硫化物的循环穿梭,提高SSLMBs的库仑效率[67][如图3(b)所示]. ...
0
0
0
0
3
... 1962年,Appel等[64]报道了双(氟磺酰)亚胺{[(FSO2)2N]H,HFSI}的合成方法.1995年,Armand等[65]首先将其应用于电池领域.基于LiFSI的有机非水液态电解质表现出优异的离子电导率,并且能够有效地参与电极/电解质界面的建立[66].2014年,本文作者团队[25]报道了LiFSI/PEO体系的物理及电化学性质.相较于传统的LiTFSI/PEO电解质,LiFSI/PEO显示出更低的玻璃化转变温度{Tg=-45 ℃(LiFSI/PEO) vs. -36 ℃(LiTFSI/PEO);[EO]/[Li]=20,EO单元与锂离子的摩尔比,余同}和更高的离子电导率{80 ℃,>10-3 S/cm(LiFSI/PEO) vs. 1×10-3 S/cm(LiTFSI/PEO),[EO]/[Li]=20}.密度泛函理论(density functional theory,DFT)计算结果表明,由于FSO2-基团更小的空间位阻,氟磺酰亚胺类导电锂盐具有更高的结构柔性,增强了该类阴离子的增塑能力[25]. ...
... [25]. ...
... 全氟代磺酰亚胺导电锂盐具有较高的氧化电位(>4.5 V vs. Li/Li+),将其引入到SPE体系中,显著提升了SPEs的离子传输性质或电极/电解质的界面性能.然而,该类SPEs为典型的双离子导体体系,具有较低的锂离子迁移数(TLi+<0.5)[25].充放电过程中,由于阴、阳离子差异化的离子迁移率,电极界面存在严重的浓差极化,导致锂枝晶的生成以及较差的电化学性能. ...
... 1972年,Meussdorffer等[45]合成了一种具有磺酰亚胺(—SO2—N(-)—SO2—)中心的负电荷共轭离域的阴离子,即双(三氟甲基磺酰)亚胺阴离子{[(CF3SO2)2N]-,TFSI-}.该阴离子的负电荷通过磺酰亚胺结构的离域作用分散到4个氧原子、2个硫原子以及1个中心氮原子上.同时,磺酰亚胺结构与两个强吸电子基团(三氟甲基)相连,使负电荷进一步离域化.基于此,1983年,Armand等[46]提出将其锂盐双(三氟甲基磺酰)亚胺锂{[(CF3SO2)2N]Li,LiTFSI}作为SPEs导电锂盐,应用于SSLMBs体系.TFSI-阴离子具有较高的结构柔性,不同的构象异构体之间易于相互转换,有助于降低聚合物链段之间的分子间相互作用强度[47].与其他锂离子导电SPEs相比,基于LiTFSI的SPEs表现出较高的离子电导率.此外,LiTFSI还具有较高的化学稳定性、热稳定性以及较低的腐蚀性和毒性.得益于上述优点,LiTFSI作为SPEs的导电锂盐,在近30年间获得了广泛的关注和研究[48-54].特别是,基于LiTFSI/PEO电解质的SSLMBs已作为动力电源和储能装置在电动汽车(Bluecar®)和储能电站(Bluestorage®)等领域中获得了示范性应用[55].然而,在极性非质子溶剂中(如碳酸酯),全氟代阴离子(TFSI-)基本不参与溶剂化,因而其SPE的阴离子迁移占据主导地位,锂离子迁移数较低(TLi+<0.5),造成浓差极化[56-57].此外,LiTFSI还原电位较低[58](<0.5 V vs. Li/Li+),难以在金属锂表面发生电化学还原以参与固态电解质界面(solid electrolyte interphase,SEI)膜的构建,因而LiTFSI/PEO电解质与金属锂的界面稳定性较差,导致其SSLMBs的循环和倍率性能不足[59]. ...
1
... 1972年,Meussdorffer等[45]合成了一种具有磺酰亚胺(—SO2—N(-)—SO2—)中心的负电荷共轭离域的阴离子,即双(三氟甲基磺酰)亚胺阴离子{[(CF3SO2)2N]-,TFSI-}.该阴离子的负电荷通过磺酰亚胺结构的离域作用分散到4个氧原子、2个硫原子以及1个中心氮原子上.同时,磺酰亚胺结构与两个强吸电子基团(三氟甲基)相连,使负电荷进一步离域化.基于此,1983年,Armand等[46]提出将其锂盐双(三氟甲基磺酰)亚胺锂{[(CF3SO2)2N]Li,LiTFSI}作为SPEs导电锂盐,应用于SSLMBs体系.TFSI-阴离子具有较高的结构柔性,不同的构象异构体之间易于相互转换,有助于降低聚合物链段之间的分子间相互作用强度[47].与其他锂离子导电SPEs相比,基于LiTFSI的SPEs表现出较高的离子电导率.此外,LiTFSI还具有较高的化学稳定性、热稳定性以及较低的腐蚀性和毒性.得益于上述优点,LiTFSI作为SPEs的导电锂盐,在近30年间获得了广泛的关注和研究[48-54].特别是,基于LiTFSI/PEO电解质的SSLMBs已作为动力电源和储能装置在电动汽车(Bluecar®)和储能电站(Bluestorage®)等领域中获得了示范性应用[55].然而,在极性非质子溶剂中(如碳酸酯),全氟代阴离子(TFSI-)基本不参与溶剂化,因而其SPE的阴离子迁移占据主导地位,锂离子迁移数较低(TLi+<0.5),造成浓差极化[56-57].此外,LiTFSI还原电位较低[58](<0.5 V vs. Li/Li+),难以在金属锂表面发生电化学还原以参与固态电解质界面(solid electrolyte interphase,SEI)膜的构建,因而LiTFSI/PEO电解质与金属锂的界面稳定性较差,导致其SSLMBs的循环和倍率性能不足[59]. ...
1
... 1972年,Meussdorffer等[45]合成了一种具有磺酰亚胺(—SO2—N(-)—SO2—)中心的负电荷共轭离域的阴离子,即双(三氟甲基磺酰)亚胺阴离子{[(CF3SO2)2N]-,TFSI-}.该阴离子的负电荷通过磺酰亚胺结构的离域作用分散到4个氧原子、2个硫原子以及1个中心氮原子上.同时,磺酰亚胺结构与两个强吸电子基团(三氟甲基)相连,使负电荷进一步离域化.基于此,1983年,Armand等[46]提出将其锂盐双(三氟甲基磺酰)亚胺锂{[(CF3SO2)2N]Li,LiTFSI}作为SPEs导电锂盐,应用于SSLMBs体系.TFSI-阴离子具有较高的结构柔性,不同的构象异构体之间易于相互转换,有助于降低聚合物链段之间的分子间相互作用强度[47].与其他锂离子导电SPEs相比,基于LiTFSI的SPEs表现出较高的离子电导率.此外,LiTFSI还具有较高的化学稳定性、热稳定性以及较低的腐蚀性和毒性.得益于上述优点,LiTFSI作为SPEs的导电锂盐,在近30年间获得了广泛的关注和研究[48-54].特别是,基于LiTFSI/PEO电解质的SSLMBs已作为动力电源和储能装置在电动汽车(Bluecar®)和储能电站(Bluestorage®)等领域中获得了示范性应用[55].然而,在极性非质子溶剂中(如碳酸酯),全氟代阴离子(TFSI-)基本不参与溶剂化,因而其SPE的阴离子迁移占据主导地位,锂离子迁移数较低(TLi+<0.5),造成浓差极化[56-57].此外,LiTFSI还原电位较低[58](<0.5 V vs. Li/Li+),难以在金属锂表面发生电化学还原以参与固态电解质界面(solid electrolyte interphase,SEI)膜的构建,因而LiTFSI/PEO电解质与金属锂的界面稳定性较差,导致其SSLMBs的循环和倍率性能不足[59]. ...
1
... 1972年,Meussdorffer等[45]合成了一种具有磺酰亚胺(—SO2—N(-)—SO2—)中心的负电荷共轭离域的阴离子,即双(三氟甲基磺酰)亚胺阴离子{[(CF3SO2)2N]-,TFSI-}.该阴离子的负电荷通过磺酰亚胺结构的离域作用分散到4个氧原子、2个硫原子以及1个中心氮原子上.同时,磺酰亚胺结构与两个强吸电子基团(三氟甲基)相连,使负电荷进一步离域化.基于此,1983年,Armand等[46]提出将其锂盐双(三氟甲基磺酰)亚胺锂{[(CF3SO2)2N]Li,LiTFSI}作为SPEs导电锂盐,应用于SSLMBs体系.TFSI-阴离子具有较高的结构柔性,不同的构象异构体之间易于相互转换,有助于降低聚合物链段之间的分子间相互作用强度[47].与其他锂离子导电SPEs相比,基于LiTFSI的SPEs表现出较高的离子电导率.此外,LiTFSI还具有较高的化学稳定性、热稳定性以及较低的腐蚀性和毒性.得益于上述优点,LiTFSI作为SPEs的导电锂盐,在近30年间获得了广泛的关注和研究[48-54].特别是,基于LiTFSI/PEO电解质的SSLMBs已作为动力电源和储能装置在电动汽车(Bluecar®)和储能电站(Bluestorage®)等领域中获得了示范性应用[55].然而,在极性非质子溶剂中(如碳酸酯),全氟代阴离子(TFSI-)基本不参与溶剂化,因而其SPE的阴离子迁移占据主导地位,锂离子迁移数较低(TLi+<0.5),造成浓差极化[56-57].此外,LiTFSI还原电位较低[58](<0.5 V vs. Li/Li+),难以在金属锂表面发生电化学还原以参与固态电解质界面(solid electrolyte interphase,SEI)膜的构建,因而LiTFSI/PEO电解质与金属锂的界面稳定性较差,导致其SSLMBs的循环和倍率性能不足[59]. ...
1
... 1972年,Meussdorffer等[45]合成了一种具有磺酰亚胺(—SO2—N(-)—SO2—)中心的负电荷共轭离域的阴离子,即双(三氟甲基磺酰)亚胺阴离子{[(CF3SO2)2N]-,TFSI-}.该阴离子的负电荷通过磺酰亚胺结构的离域作用分散到4个氧原子、2个硫原子以及1个中心氮原子上.同时,磺酰亚胺结构与两个强吸电子基团(三氟甲基)相连,使负电荷进一步离域化.基于此,1983年,Armand等[46]提出将其锂盐双(三氟甲基磺酰)亚胺锂{[(CF3SO2)2N]Li,LiTFSI}作为SPEs导电锂盐,应用于SSLMBs体系.TFSI-阴离子具有较高的结构柔性,不同的构象异构体之间易于相互转换,有助于降低聚合物链段之间的分子间相互作用强度[47].与其他锂离子导电SPEs相比,基于LiTFSI的SPEs表现出较高的离子电导率.此外,LiTFSI还具有较高的化学稳定性、热稳定性以及较低的腐蚀性和毒性.得益于上述优点,LiTFSI作为SPEs的导电锂盐,在近30年间获得了广泛的关注和研究[48-54].特别是,基于LiTFSI/PEO电解质的SSLMBs已作为动力电源和储能装置在电动汽车(Bluecar®)和储能电站(Bluestorage®)等领域中获得了示范性应用[55].然而,在极性非质子溶剂中(如碳酸酯),全氟代阴离子(TFSI-)基本不参与溶剂化,因而其SPE的阴离子迁移占据主导地位,锂离子迁移数较低(TLi+<0.5),造成浓差极化[56-57].此外,LiTFSI还原电位较低[58](<0.5 V vs. Li/Li+),难以在金属锂表面发生电化学还原以参与固态电解质界面(solid electrolyte interphase,SEI)膜的构建,因而LiTFSI/PEO电解质与金属锂的界面稳定性较差,导致其SSLMBs的循环和倍率性能不足[59]. ...
0
0
0
0
0
1
... 1972年,Meussdorffer等[45]合成了一种具有磺酰亚胺(—SO2—N(-)—SO2—)中心的负电荷共轭离域的阴离子,即双(三氟甲基磺酰)亚胺阴离子{[(CF3SO2)2N]-,TFSI-}.该阴离子的负电荷通过磺酰亚胺结构的离域作用分散到4个氧原子、2个硫原子以及1个中心氮原子上.同时,磺酰亚胺结构与两个强吸电子基团(三氟甲基)相连,使负电荷进一步离域化.基于此,1983年,Armand等[46]提出将其锂盐双(三氟甲基磺酰)亚胺锂{[(CF3SO2)2N]Li,LiTFSI}作为SPEs导电锂盐,应用于SSLMBs体系.TFSI-阴离子具有较高的结构柔性,不同的构象异构体之间易于相互转换,有助于降低聚合物链段之间的分子间相互作用强度[47].与其他锂离子导电SPEs相比,基于LiTFSI的SPEs表现出较高的离子电导率.此外,LiTFSI还具有较高的化学稳定性、热稳定性以及较低的腐蚀性和毒性.得益于上述优点,LiTFSI作为SPEs的导电锂盐,在近30年间获得了广泛的关注和研究[48-54].特别是,基于LiTFSI/PEO电解质的SSLMBs已作为动力电源和储能装置在电动汽车(Bluecar®)和储能电站(Bluestorage®)等领域中获得了示范性应用[55].然而,在极性非质子溶剂中(如碳酸酯),全氟代阴离子(TFSI-)基本不参与溶剂化,因而其SPE的阴离子迁移占据主导地位,锂离子迁移数较低(TLi+<0.5),造成浓差极化[56-57].此外,LiTFSI还原电位较低[58](<0.5 V vs. Li/Li+),难以在金属锂表面发生电化学还原以参与固态电解质界面(solid electrolyte interphase,SEI)膜的构建,因而LiTFSI/PEO电解质与金属锂的界面稳定性较差,导致其SSLMBs的循环和倍率性能不足[59]. ...
1
... 1972年,Meussdorffer等[45]合成了一种具有磺酰亚胺(—SO2—N(-)—SO2—)中心的负电荷共轭离域的阴离子,即双(三氟甲基磺酰)亚胺阴离子{[(CF3SO2)2N]-,TFSI-}.该阴离子的负电荷通过磺酰亚胺结构的离域作用分散到4个氧原子、2个硫原子以及1个中心氮原子上.同时,磺酰亚胺结构与两个强吸电子基团(三氟甲基)相连,使负电荷进一步离域化.基于此,1983年,Armand等[46]提出将其锂盐双(三氟甲基磺酰)亚胺锂{[(CF3SO2)2N]Li,LiTFSI}作为SPEs导电锂盐,应用于SSLMBs体系.TFSI-阴离子具有较高的结构柔性,不同的构象异构体之间易于相互转换,有助于降低聚合物链段之间的分子间相互作用强度[47].与其他锂离子导电SPEs相比,基于LiTFSI的SPEs表现出较高的离子电导率.此外,LiTFSI还具有较高的化学稳定性、热稳定性以及较低的腐蚀性和毒性.得益于上述优点,LiTFSI作为SPEs的导电锂盐,在近30年间获得了广泛的关注和研究[48-54].特别是,基于LiTFSI/PEO电解质的SSLMBs已作为动力电源和储能装置在电动汽车(Bluecar®)和储能电站(Bluestorage®)等领域中获得了示范性应用[55].然而,在极性非质子溶剂中(如碳酸酯),全氟代阴离子(TFSI-)基本不参与溶剂化,因而其SPE的阴离子迁移占据主导地位,锂离子迁移数较低(TLi+<0.5),造成浓差极化[56-57].此外,LiTFSI还原电位较低[58](<0.5 V vs. Li/Li+),难以在金属锂表面发生电化学还原以参与固态电解质界面(solid electrolyte interphase,SEI)膜的构建,因而LiTFSI/PEO电解质与金属锂的界面稳定性较差,导致其SSLMBs的循环和倍率性能不足[59]. ...
1
... 1972年,Meussdorffer等[45]合成了一种具有磺酰亚胺(—SO2—N(-)—SO2—)中心的负电荷共轭离域的阴离子,即双(三氟甲基磺酰)亚胺阴离子{[(CF3SO2)2N]-,TFSI-}.该阴离子的负电荷通过磺酰亚胺结构的离域作用分散到4个氧原子、2个硫原子以及1个中心氮原子上.同时,磺酰亚胺结构与两个强吸电子基团(三氟甲基)相连,使负电荷进一步离域化.基于此,1983年,Armand等[46]提出将其锂盐双(三氟甲基磺酰)亚胺锂{[(CF3SO2)2N]Li,LiTFSI}作为SPEs导电锂盐,应用于SSLMBs体系.TFSI-阴离子具有较高的结构柔性,不同的构象异构体之间易于相互转换,有助于降低聚合物链段之间的分子间相互作用强度[47].与其他锂离子导电SPEs相比,基于LiTFSI的SPEs表现出较高的离子电导率.此外,LiTFSI还具有较高的化学稳定性、热稳定性以及较低的腐蚀性和毒性.得益于上述优点,LiTFSI作为SPEs的导电锂盐,在近30年间获得了广泛的关注和研究[48-54].特别是,基于LiTFSI/PEO电解质的SSLMBs已作为动力电源和储能装置在电动汽车(Bluecar®)和储能电站(Bluestorage®)等领域中获得了示范性应用[55].然而,在极性非质子溶剂中(如碳酸酯),全氟代阴离子(TFSI-)基本不参与溶剂化,因而其SPE的阴离子迁移占据主导地位,锂离子迁移数较低(TLi+<0.5),造成浓差极化[56-57].此外,LiTFSI还原电位较低[58](<0.5 V vs. Li/Li+),难以在金属锂表面发生电化学还原以参与固态电解质界面(solid electrolyte interphase,SEI)膜的构建,因而LiTFSI/PEO电解质与金属锂的界面稳定性较差,导致其SSLMBs的循环和倍率性能不足[59]. ...
1
... 1972年,Meussdorffer等[45]合成了一种具有磺酰亚胺(—SO2—N(-)—SO2—)中心的负电荷共轭离域的阴离子,即双(三氟甲基磺酰)亚胺阴离子{[(CF3SO2)2N]-,TFSI-}.该阴离子的负电荷通过磺酰亚胺结构的离域作用分散到4个氧原子、2个硫原子以及1个中心氮原子上.同时,磺酰亚胺结构与两个强吸电子基团(三氟甲基)相连,使负电荷进一步离域化.基于此,1983年,Armand等[46]提出将其锂盐双(三氟甲基磺酰)亚胺锂{[(CF3SO2)2N]Li,LiTFSI}作为SPEs导电锂盐,应用于SSLMBs体系.TFSI-阴离子具有较高的结构柔性,不同的构象异构体之间易于相互转换,有助于降低聚合物链段之间的分子间相互作用强度[47].与其他锂离子导电SPEs相比,基于LiTFSI的SPEs表现出较高的离子电导率.此外,LiTFSI还具有较高的化学稳定性、热稳定性以及较低的腐蚀性和毒性.得益于上述优点,LiTFSI作为SPEs的导电锂盐,在近30年间获得了广泛的关注和研究[48-54].特别是,基于LiTFSI/PEO电解质的SSLMBs已作为动力电源和储能装置在电动汽车(Bluecar®)和储能电站(Bluestorage®)等领域中获得了示范性应用[55].然而,在极性非质子溶剂中(如碳酸酯),全氟代阴离子(TFSI-)基本不参与溶剂化,因而其SPE的阴离子迁移占据主导地位,锂离子迁移数较低(TLi+<0.5),造成浓差极化[56-57].此外,LiTFSI还原电位较低[58](<0.5 V vs. Li/Li+),难以在金属锂表面发生电化学还原以参与固态电解质界面(solid electrolyte interphase,SEI)膜的构建,因而LiTFSI/PEO电解质与金属锂的界面稳定性较差,导致其SSLMBs的循环和倍率性能不足[59]. ...
4
... 1972年,Meussdorffer等[45]合成了一种具有磺酰亚胺(—SO2—N(-)—SO2—)中心的负电荷共轭离域的阴离子,即双(三氟甲基磺酰)亚胺阴离子{[(CF3SO2)2N]-,TFSI-}.该阴离子的负电荷通过磺酰亚胺结构的离域作用分散到4个氧原子、2个硫原子以及1个中心氮原子上.同时,磺酰亚胺结构与两个强吸电子基团(三氟甲基)相连,使负电荷进一步离域化.基于此,1983年,Armand等[46]提出将其锂盐双(三氟甲基磺酰)亚胺锂{[(CF3SO2)2N]Li,LiTFSI}作为SPEs导电锂盐,应用于SSLMBs体系.TFSI-阴离子具有较高的结构柔性,不同的构象异构体之间易于相互转换,有助于降低聚合物链段之间的分子间相互作用强度[47].与其他锂离子导电SPEs相比,基于LiTFSI的SPEs表现出较高的离子电导率.此外,LiTFSI还具有较高的化学稳定性、热稳定性以及较低的腐蚀性和毒性.得益于上述优点,LiTFSI作为SPEs的导电锂盐,在近30年间获得了广泛的关注和研究[48-54].特别是,基于LiTFSI/PEO电解质的SSLMBs已作为动力电源和储能装置在电动汽车(Bluecar®)和储能电站(Bluestorage®)等领域中获得了示范性应用[55].然而,在极性非质子溶剂中(如碳酸酯),全氟代阴离子(TFSI-)基本不参与溶剂化,因而其SPE的阴离子迁移占据主导地位,锂离子迁移数较低(TLi+<0.5),造成浓差极化[56-57].此外,LiTFSI还原电位较低[58](<0.5 V vs. Li/Li+),难以在金属锂表面发生电化学还原以参与固态电解质界面(solid electrolyte interphase,SEI)膜的构建,因而LiTFSI/PEO电解质与金属锂的界面稳定性较差,导致其SSLMBs的循环和倍率性能不足[59]. ...
... 此外,基于LiFSI的SPEs的金属锂对称电池在高温搁置过程中界面阻抗更加稳定,电池恒电流循环寿命与基于LiTFSI/PEO的电池相比得到有效的增长[如253 h(LiFSI/PEO) vs. 55 h(LiTFSI/PEO)][21].研究结果表明,LiFSI的还原电位(>1.0 V vs. Li/Li+)显著高于LiTFSI(<0.5 V vs. Li/Li+),并且能够在金属锂表面形成富含无机锂盐氟化锂(LiF)的固体电解质界面[如图3(a)所示][58].这不仅有效减缓电解质与金属锂的界面副反应,而且一定程度抑制了全固态锂/硫电池中多硫化物的循环穿梭,提高SSLMBs的库仑效率[67][如图3(b)所示]. ...
... 盐的电化学稳定性的化学模拟,参考文献[58]许可转载,版权所有2018年美国化学学会;(b) LiFSI/PEO中致密的SEI保护锂-硫电池中的锂金属免受与多硫化物的副反应的示意图,参考文献[67]许可转载,版权所有2017美国化学学会;(c) 利用LiFSI作为LiTCM/PEO的添加剂提高界面稳定性的示意图,经参考文献[74]许可转载,版权2019爱思唯尔(a) Chemical simulation of the electrochemical stabilities of LiFTFSI, LiFSI and LiTFSI salts. Reproduced with permission from Ref.[58]. Copyright 2018 American Chemical Society; (b) Schematic illustration of the impermeable SEI form in LiFSI/PEO to protect lithium metal from the side reactions with polysulfide in lithium-sulfur batteries. Reproduced with permission from Ref.[67]. Copyright 2017 American Chemical Society; (c) Schematic illustration of the enhanced interfacial stability by utilizing LiFSI as additive for LiTCM/PEO. Reproduced with permission from Ref.[74]. Copyright 2019 ElsevierFig. 3
... (a) Chemical simulation of the electrochemical stabilities of LiFTFSI, LiFSI and LiTFSI salts. Reproduced with permission from Ref.[58]. Copyright 2018 American Chemical Society; (b) Schematic illustration of the impermeable SEI form in LiFSI/PEO to protect lithium metal from the side reactions with polysulfide in lithium-sulfur batteries. Reproduced with permission from Ref.[67]. Copyright 2017 American Chemical Society; (c) Schematic illustration of the enhanced interfacial stability by utilizing LiFSI as additive for LiTCM/PEO. Reproduced with permission from Ref.[74]. Copyright 2019 ElsevierFig. 3
... 1972年,Meussdorffer等[45]合成了一种具有磺酰亚胺(—SO2—N(-)—SO2—)中心的负电荷共轭离域的阴离子,即双(三氟甲基磺酰)亚胺阴离子{[(CF3SO2)2N]-,TFSI-}.该阴离子的负电荷通过磺酰亚胺结构的离域作用分散到4个氧原子、2个硫原子以及1个中心氮原子上.同时,磺酰亚胺结构与两个强吸电子基团(三氟甲基)相连,使负电荷进一步离域化.基于此,1983年,Armand等[46]提出将其锂盐双(三氟甲基磺酰)亚胺锂{[(CF3SO2)2N]Li,LiTFSI}作为SPEs导电锂盐,应用于SSLMBs体系.TFSI-阴离子具有较高的结构柔性,不同的构象异构体之间易于相互转换,有助于降低聚合物链段之间的分子间相互作用强度[47].与其他锂离子导电SPEs相比,基于LiTFSI的SPEs表现出较高的离子电导率.此外,LiTFSI还具有较高的化学稳定性、热稳定性以及较低的腐蚀性和毒性.得益于上述优点,LiTFSI作为SPEs的导电锂盐,在近30年间获得了广泛的关注和研究[48-54].特别是,基于LiTFSI/PEO电解质的SSLMBs已作为动力电源和储能装置在电动汽车(Bluecar®)和储能电站(Bluestorage®)等领域中获得了示范性应用[55].然而,在极性非质子溶剂中(如碳酸酯),全氟代阴离子(TFSI-)基本不参与溶剂化,因而其SPE的阴离子迁移占据主导地位,锂离子迁移数较低(TLi+<0.5),造成浓差极化[56-57].此外,LiTFSI还原电位较低[58](<0.5 V vs. Li/Li+),难以在金属锂表面发生电化学还原以参与固态电解质界面(solid electrolyte interphase,SEI)膜的构建,因而LiTFSI/PEO电解质与金属锂的界面稳定性较差,导致其SSLMBs的循环和倍率性能不足[59]. ...
... 此外,基于LiFSI的SPEs的金属锂对称电池在高温搁置过程中界面阻抗更加稳定,电池恒电流循环寿命与基于LiTFSI/PEO的电池相比得到有效的增长[如253 h(LiFSI/PEO) vs. 55 h(LiTFSI/PEO)][21].研究结果表明,LiFSI的还原电位(>1.0 V vs. Li/Li+)显著高于LiTFSI(<0.5 V vs. Li/Li+),并且能够在金属锂表面形成富含无机锂盐氟化锂(LiF)的固体电解质界面[如图3(a)所示][58].这不仅有效减缓电解质与金属锂的界面副反应,而且一定程度抑制了全固态锂/硫电池中多硫化物的循环穿梭,提高SSLMBs的库仑效率[67][如图3(b)所示]. ...
... 保护锂-硫电池中的锂金属免受与多硫化物的副反应的示意图,参考文献[67]许可转载,版权所有2017美国化学学会;(c) 利用LiFSI作为LiTCM/PEO的添加剂提高界面稳定性的示意图,经参考文献[74]许可转载,版权2019爱思唯尔(a) Chemical simulation of the electrochemical stabilities of LiFTFSI, LiFSI and LiTFSI salts. Reproduced with permission from Ref.[58]. Copyright 2018 American Chemical Society; (b) Schematic illustration of the impermeable SEI form in LiFSI/PEO to protect lithium metal from the side reactions with polysulfide in lithium-sulfur batteries. Reproduced with permission from Ref.[67]. Copyright 2017 American Chemical Society; (c) Schematic illustration of the enhanced interfacial stability by utilizing LiFSI as additive for LiTCM/PEO. Reproduced with permission from Ref.[74]. Copyright 2019 ElsevierFig. 3
... ]. Copyright 2018 American Chemical Society; (b) Schematic illustration of the impermeable SEI form in LiFSI/PEO to protect lithium metal from the side reactions with polysulfide in lithium-sulfur batteries. Reproduced with permission from Ref.[67]. Copyright 2017 American Chemical Society; (c) Schematic illustration of the enhanced interfacial stability by utilizing LiFSI as additive for LiTCM/PEO. Reproduced with permission from Ref.[74]. Copyright 2019 ElsevierFig. 3
... 此外,基于LiFSI的SPEs的金属锂对称电池在高温搁置过程中界面阻抗更加稳定,电池恒电流循环寿命与基于LiTFSI/PEO的电池相比得到有效的增长[如253 h(LiFSI/PEO) vs. 55 h(LiTFSI/PEO)][21].研究结果表明,LiFSI的还原电位(>1.0 V vs. Li/Li+)显著高于LiTFSI(<0.5 V vs. Li/Li+),并且能够在金属锂表面形成富含无机锂盐氟化锂(LiF)的固体电解质界面[如图3(a)所示][58].这不仅有效减缓电解质与金属锂的界面副反应,而且一定程度抑制了全固态锂/硫电池中多硫化物的循环穿梭,提高SSLMBs的库仑效率[67][如图3(b)所示].
(a) Chemical simulation of the electrochemical stabilities of LiFTFSI, LiFSI and LiTFSI salts. Reproduced with permission from Ref.[58]. Copyright 2018 American Chemical Society; (b) Schematic illustration of the impermeable SEI form in LiFSI/PEO to protect lithium metal from the side reactions with polysulfide in lithium-sulfur batteries. Reproduced with permission from Ref.[67]. Copyright 2017 American Chemical Society; (c) Schematic illustration of the enhanced interfacial stability by utilizing LiFSI as additive for LiTCM/PEO. Reproduced with permission from Ref.[74]. Copyright 2019 ElsevierFig. 3
... ]. Copyright 2017 American Chemical Society; (c) Schematic illustration of the enhanced interfacial stability by utilizing LiFSI as additive for LiTCM/PEO. Reproduced with permission from Ref.[74]. Copyright 2019 ElsevierFig. 3
(a) Lithium-ion conductivities of the state-of-art SPEs. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (b) Schematic illustration of the interaction between EFA-anion and PEO. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (c) Lithium-ion conductivities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (d) Schematic illustration on the anodic stabilities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (e) Schematic illustration of blocking the shuttle effect of polysulfide in LiDFTFSI/PEO electrolyte. Reproduced with permission from Ref.[77]. Copyright 2019 ElsevierFig. 6
... 电解质中阴离子与聚合物基体间相互作用,参考文献[75]许可转载,版权2021约翰威立父子公司;(c) LiDFTFSI/PEO、LiMTFSI/PEO、LiMSI/PEO电解质的锂离子电导率,参考文献[76]许可转载,版权2018约翰威立父子公司;(d) 基于LiDFTFSI/PEO、LiMTFSI/PEO、LiMSI/PEO电解质耐氧化稳定性,参考文献[76]许可转载,版权2018约翰威立父子公司;(e) LiDFTFSI/PEO电解质抑制多硫化物穿梭的机理,参考文献[77]许可转载,版权2019爱思唯尔(a) Lithium-ion conductivities of the state-of-art SPEs. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (b) Schematic illustration of the interaction between EFA-anion and PEO. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (c) Lithium-ion conductivities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (d) Schematic illustration on the anodic stabilities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (e) Schematic illustration of blocking the shuttle effect of polysulfide in LiDFTFSI/PEO electrolyte. Reproduced with permission from Ref.[77]. Copyright 2019 ElsevierFig. 6
... [75]. Copyright 2000 John Wiley & Sons, Inc.; (b) Schematic illustration of the interaction between EFA-anion and PEO. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (c) Lithium-ion conductivities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (d) Schematic illustration on the anodic stabilities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (e) Schematic illustration of blocking the shuttle effect of polysulfide in LiDFTFSI/PEO electrolyte. Reproduced with permission from Ref.[77]. Copyright 2019 ElsevierFig. 6
... [75]. Copyright 2000 John Wiley & Sons, Inc.; (c) Lithium-ion conductivities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (d) Schematic illustration on the anodic stabilities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (e) Schematic illustration of blocking the shuttle effect of polysulfide in LiDFTFSI/PEO electrolyte. Reproduced with permission from Ref.[77]. Copyright 2019 ElsevierFig. 6
(a) Lithium-ion conductivities of the state-of-art SPEs. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (b) Schematic illustration of the interaction between EFA-anion and PEO. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (c) Lithium-ion conductivities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (d) Schematic illustration on the anodic stabilities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (e) Schematic illustration of blocking the shuttle effect of polysulfide in LiDFTFSI/PEO electrolyte. Reproduced with permission from Ref.[77]. Copyright 2019 ElsevierFig. 6
... 电解质耐氧化稳定性,参考文献[76]许可转载,版权2018约翰威立父子公司;(e) LiDFTFSI/PEO电解质抑制多硫化物穿梭的机理,参考文献[77]许可转载,版权2019爱思唯尔(a) Lithium-ion conductivities of the state-of-art SPEs. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (b) Schematic illustration of the interaction between EFA-anion and PEO. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (c) Lithium-ion conductivities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (d) Schematic illustration on the anodic stabilities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (e) Schematic illustration of blocking the shuttle effect of polysulfide in LiDFTFSI/PEO electrolyte. Reproduced with permission from Ref.[77]. Copyright 2019 ElsevierFig. 6
... [76]. Copyright 2000 John Wiley & Sons, Inc.; (d) Schematic illustration on the anodic stabilities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (e) Schematic illustration of blocking the shuttle effect of polysulfide in LiDFTFSI/PEO electrolyte. Reproduced with permission from Ref.[77]. Copyright 2019 ElsevierFig. 6
... [76]. Copyright 2000 John Wiley & Sons, Inc.; (e) Schematic illustration of blocking the shuttle effect of polysulfide in LiDFTFSI/PEO electrolyte. Reproduced with permission from Ref.[77]. Copyright 2019 ElsevierFig. 6
(a) Lithium-ion conductivities of the state-of-art SPEs. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (b) Schematic illustration of the interaction between EFA-anion and PEO. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (c) Lithium-ion conductivities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (d) Schematic illustration on the anodic stabilities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (e) Schematic illustration of blocking the shuttle effect of polysulfide in LiDFTFSI/PEO electrolyte. Reproduced with permission from Ref.[77]. Copyright 2019 ElsevierFig. 6
... 负电荷超级离域的阴离子的设计策略,经参考文献[78]许可转载,版权2021约翰威立父子公司;(b) LiX/PEO(X=sTFSI, BETI, TFSI, FSI)电解质80 ℃时的锂离子电导率,经参考文献[78]许可转载,版权2021约翰威立父子公司;(c) 负电荷超级离域的锂单离子导体阴离子的设计策略(a) Design strategy of the anion with extremely delocalized negative charge. Reproduced with permission from Ref.[78]. Copyright 2021 John Wiley & Sons, Inc.; (b) Li+ ion only (σLi+) conductivity of LiX/PEO (X=sTFSI, BETI, TFSI and FSI) at 80 ℃. Reproduced with permission from Ref.[78]. Copyright 2021 John Wiley & Sons, Inc.; (c) Design strategy of the anion with extremely delocalized negative charge in the single Li-ion conductorsFig. 42 部分氟代磺酰亚胺导电锂盐
全氟代磺酰亚胺导电锂盐具有较高的氧化电位(>4.5 V vs. Li/Li+),将其引入到SPE体系中,显著提升了SPEs的离子传输性质或电极/电解质的界面性能.然而,该类SPEs为典型的双离子导体体系,具有较低的锂离子迁移数(TLi+<0.5)[25].充放电过程中,由于阴、阳离子差异化的离子迁移率,电极界面存在严重的浓差极化,导致锂枝晶的生成以及较差的电化学性能. ...
... ℃时的锂离子电导率,经参考文献[78]许可转载,版权2021约翰威立父子公司;(c) 负电荷超级离域的锂单离子导体阴离子的设计策略(a) Design strategy of the anion with extremely delocalized negative charge. Reproduced with permission from Ref.[78]. Copyright 2021 John Wiley & Sons, Inc.; (b) Li+ ion only (σLi+) conductivity of LiX/PEO (X=sTFSI, BETI, TFSI and FSI) at 80 ℃. Reproduced with permission from Ref.[78]. Copyright 2021 John Wiley & Sons, Inc.; (c) Design strategy of the anion with extremely delocalized negative charge in the single Li-ion conductorsFig. 42 部分氟代磺酰亚胺导电锂盐
全氟代磺酰亚胺导电锂盐具有较高的氧化电位(>4.5 V vs. Li/Li+),将其引入到SPE体系中,显著提升了SPEs的离子传输性质或电极/电解质的界面性能.然而,该类SPEs为典型的双离子导体体系,具有较低的锂离子迁移数(TLi+<0.5)[25].充放电过程中,由于阴、阳离子差异化的离子迁移率,电极界面存在严重的浓差极化,导致锂枝晶的生成以及较差的电化学性能. ...
... [78]. Copyright 2021 John Wiley & Sons, Inc.; (b) Li+ ion only (σLi+) conductivity of LiX/PEO (X=sTFSI, BETI, TFSI and FSI) at 80 ℃. Reproduced with permission from Ref.[78]. Copyright 2021 John Wiley & Sons, Inc.; (c) Design strategy of the anion with extremely delocalized negative charge in the single Li-ion conductorsFig. 42 部分氟代磺酰亚胺导电锂盐
全氟代磺酰亚胺导电锂盐具有较高的氧化电位(>4.5 V vs. Li/Li+),将其引入到SPE体系中,显著提升了SPEs的离子传输性质或电极/电解质的界面性能.然而,该类SPEs为典型的双离子导体体系,具有较低的锂离子迁移数(TLi+<0.5)[25].充放电过程中,由于阴、阳离子差异化的离子迁移率,电极界面存在严重的浓差极化,导致锂枝晶的生成以及较差的电化学性能. ...
... [78]. Copyright 2021 John Wiley & Sons, Inc.; (c) Design strategy of the anion with extremely delocalized negative charge in the single Li-ion conductorsFig. 42 部分氟代磺酰亚胺导电锂盐
全氟代磺酰亚胺导电锂盐具有较高的氧化电位(>4.5 V vs. Li/Li+),将其引入到SPE体系中,显著提升了SPEs的离子传输性质或电极/电解质的界面性能.然而,该类SPEs为典型的双离子导体体系,具有较低的锂离子迁移数(TLi+<0.5)[25].充放电过程中,由于阴、阳离子差异化的离子迁移率,电极界面存在严重的浓差极化,导致锂枝晶的生成以及较差的电化学性能. ...
1
... 之后,本团队合成了基于[CF3SO(=NSO2CF3)2]-阴离子的锂盐,即[三氟甲基(S-三氟甲基磺酰亚胺)磺酰](三氟甲基磺酰)亚胺锂[CF3SO(=NSO2CF3)2]Li[LisTFSI,图4(a)],并系统评价了其作为导电锂盐应用于LIBs以及SSLMBs的可行性[78-79].研究表明,相较于LiTFSI,在SPEs体系中,LisTFSI显示出较高的锂离子迁移率[80 ℃,2.5×10-4 S/cm(LisTFSI/PEO) vs. 1.8×10-4 S/cm(LiTFSI/PEO)],见图4(b).而且,LisTFSI/PEO电解质对金属锂负极显示出良好的化学稳定性[78].基于上述研究思路和结果,以聚合物锂盐阴离子结构改性为切入点,本团队提出了“超级聚阴离子锂盐”的概念,以期进一步提升锂单离子导电SPEs的性能[80].在磺酰亚胺阴离子[CF3SO2N(-)SO2—]中心上,采用强吸电子基团三氟甲基磺酰基(=NSO2CF3)取代其中的一个氧原子,进一步提升了阴离子负电荷的离域化程度,制备了基于阴离子负电荷超级离域化的聚阴离子锂盐[聚(对苯乙烯磺酰)(三氟甲基(S-三氟甲基磺酰亚胺基)磺酰)亚胺锂,LiPsTFSI,图4(c)].在70 ℃时,LiPSsTFSI/PEO电解质的离子电导率可达10-4 S/cm,TLi+达到0.91[80].这一结果证实,通过阴离子负电荷共轭离域化,降低锂盐解离能,是改善SPEs性能的有效途径之一. ...
2
... 之后,本团队合成了基于[CF3SO(=NSO2CF3)2]-阴离子的锂盐,即[三氟甲基(S-三氟甲基磺酰亚胺)磺酰](三氟甲基磺酰)亚胺锂[CF3SO(=NSO2CF3)2]Li[LisTFSI,图4(a)],并系统评价了其作为导电锂盐应用于LIBs以及SSLMBs的可行性[78-79].研究表明,相较于LiTFSI,在SPEs体系中,LisTFSI显示出较高的锂离子迁移率[80 ℃,2.5×10-4 S/cm(LisTFSI/PEO) vs. 1.8×10-4 S/cm(LiTFSI/PEO)],见图4(b).而且,LisTFSI/PEO电解质对金属锂负极显示出良好的化学稳定性[78].基于上述研究思路和结果,以聚合物锂盐阴离子结构改性为切入点,本团队提出了“超级聚阴离子锂盐”的概念,以期进一步提升锂单离子导电SPEs的性能[80].在磺酰亚胺阴离子[CF3SO2N(-)SO2—]中心上,采用强吸电子基团三氟甲基磺酰基(=NSO2CF3)取代其中的一个氧原子,进一步提升了阴离子负电荷的离域化程度,制备了基于阴离子负电荷超级离域化的聚阴离子锂盐[聚(对苯乙烯磺酰)(三氟甲基(S-三氟甲基磺酰亚胺基)磺酰)亚胺锂,LiPsTFSI,图4(c)].在70 ℃时,LiPSsTFSI/PEO电解质的离子电导率可达10-4 S/cm,TLi+达到0.91[80].这一结果证实,通过阴离子负电荷共轭离域化,降低锂盐解离能,是改善SPEs性能的有效途径之一. ...