储能科学与技术, 2022, 11(4): 1226-1235 doi: 10.19799/j.cnki.2095-4239.2022.0038

国际优秀储能青年科学家专刊

固态聚合物电解质导电锂盐的研究进展

王星星,1, 宋子钰1, 吴浩1, 冯文芳1, 周志彬1, 张恒,1,2

1.华中科技大学化学与化工学院,能量转化与储存材料化学教育部重点实验室,湖北 武汉 430074

2.西班牙能源合作研究中心,西班牙 阿拉瓦 维多利亚 01510

Advances in conducting lithium salts for solid polymer electrolytes

WANG Xingxing,1, SONG Ziyu1, WU Hao1, FENG Wenfang1, ZHOU Zhibin1, ZHANG Heng,1,2

1.Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

2.Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Vitoria-Gasteiz 01510, Alava, Spain

通讯作者: 张恒,教授,研究方向为聚合物电解质及固态电池,E-mail:hengzhang2020@hust.edu.cn

收稿日期: 2022-01-19   修回日期: 2022-02-17  

基金资助: 中央高校基本科研业务费资助(HUST: 2020kfyXJJS095)

Received: 2022-01-19   Revised: 2022-02-17  

作者简介 About authors

王星星(1995—),女,博士研究生,研究方向为导电锂盐和聚合物电解质,E-mail:2457609075@qq.com; E-mail:2457609075@qq.com

摘要

固态聚合物电解质(solid polymer electrolytes,SPEs)具有不易泄漏、易加工、抑制锂枝晶生长等优点,能提高固态金属锂电池(solid-state lithium metal batteries,SSLMBs)的循环寿命和安全性。导电锂盐作为SPEs的必要组分之一,不仅能够为其离子输运提供锂离子源,而且能够在电极表面发生化学或电化学反应,参与电极/SPE界面膜的构建。因此,导电锂盐的分子结构对于调控SPEs的基础物理和电化学性质及其与电极材料的界面性能有着重要的影响。结合本团队在SPEs导电锂盐领域的相关研究工作,本文主要介绍全氟代和部分氟代磺酰亚胺锂盐作为SPEs导电盐的研究进展,并探讨了SPEs导电锂盐的未来发展方向。

关键词: 固态金属锂电池 ; 固态聚合物电解质 ; 导电锂盐 ; 磺酰亚胺

Abstract

Solid polymer electrolytes (SPEs) has several distinct advantages, including no-leakage, ease of use, and suppression of lithium dendrite growth, all of which are important for improving the cycling life and safety of solid-state lithium metal batteries. Conducting lithium salts, as one of the most essential components of SPEs, could not only act as lithium-ion sources for the transportation of ionic species but also participate in the formation/construction of electrode/SPEs interphases. As a result, the chemical structures of lithium salts are critical for regulating the physical and electrochemical properties of SPEs, as well as their interfacial properties with electrode materials. This work focuses mainly on the research progress of conducting lithium salts, including perfluorinated and partially fluorinated sulfonimide salts, based on our experience in the field of SPEs. Future directions in conducting salt design for SPEs are also discussed.

Keywords: solid-state lithium metal batteries ; solid polymer electrolytes ; conducting lithium salts ; sulfonimide

PDF (3091KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王星星, 宋子钰, 吴浩, 冯文芳, 周志彬, 张恒. 固态聚合物电解质导电锂盐的研究进展[J]. 储能科学与技术, 2022, 11(4): 1226-1235

WANG Xingxing. Advances in conducting lithium salts for solid polymer electrolytes[J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235

固态金属锂电池(solid-state lithium metal batteries, SSLMBs)是一类以固态锂离子导体为电解质,高比能金属锂(3860 mA·h/g)或其合金为负极的电化学储能装置。相较于传统的基于液态电解质和石墨负极的锂离子电池(lithium-ion batteries, LIBs),SSLMBs具有较高的本征安全性和理论能量密度[1-13][图1(a)]。以中国、日本、韩国、美国等为代表的锂电科技强国,均已将SSLMBs技术列入重点发展领域,其研究和开发已经成为全球科技竞争的热点之一[14]

图1

图1   (a) 锂离子电池和二次金属锂电池的原理图;(b) 固体聚合物电解质(SPEs)在可充电锂电池中的研究趋势演变图(数据由Scifinder2022217日通过相关主题,关键词搜索“solid state batteries”、“solid polymer electrolytes”获得)

Fig. 1   (a) Schematic representation of Li-ion batteries and rechargeable Li metal batteries; (b) Evolution of research trends (i.e., number of publications) of SPEs in rechargeable lithium batteries. Data are obtained from Scifinder on the 17th February 2022 via relevant topic followed by keyword search:solid state batteriesandsolid polymer electrolytes


1973年,Wright等[15]首次报道了聚氧乙烯 (PEO)与一些非锂碱金属盐[如硫氰酸钾(KSCN),硫氰酸钠(NaSCN)]所组成的复合物在较高温度(>60 ℃)下表现出一定的离子导电性(90 ℃, KSCN-PEO, 10-5 S/cm)。1978年,Armand等[16-17]意识到该类离子导电高分子材料对发展SSLMBs技术具有重要理论依据和应用价值,并首次提出将其作为电解质应用于SSLMBs体系。总体来说,固态聚合物电解质(solid polymer electrolytes, SPEs)具有本征安全性好、易加工、抑制锂枝晶生长等优点,能够从材料层面提高SSLMBs的循环寿命和安全性[6, 9, 18-29]。因此,基于SPEs的SSLMBs的研究引起了学术界和产业界的广泛关注[图1(b)]。

锂盐是锂离子导电SPEs的载流子来源,并且能够在电极表面发生化学或电化学反应,参与电极/电解质界面相的构建。因此,锂盐的组成和化学结构对SPEs的离子输运及界面性能有着显著的影响[30-35]。早期研究表明,卤化锂(LiX, X=Cl, Br, I)[36]、硝酸锂(LiNO3)[37]、六氟砷酸锂(LiAsF6)[37]、高氯酸锂(LiClO4)[38-39]、三氟甲磺酸锂(LiSO3CF3)[40]等锂盐均能在PEO基体中溶解和解离,形成锂离子导电SPEs。其中,相较于氯化锂和硝酸锂,LiAsF6、LiClO4、LiSO3CF3等锂盐的SPEs显示出较高的离子电导率(>10-4 S/cm, 80 ℃),这主要是因为后者具有较高的负电荷分散程度[41-42]。但是,上述锂盐均存在一些不足,例如,LiAsF6的潜在毒性[30]、LiClO4的强氧化性[43]、LiSO3CF3对铝集流体的腐蚀性[44]等,使其相应的电解质难以满足SSLMBs的实际需求。

1972年,Meussdorffer等[45]合成了一种具有磺酰亚胺(—SO2—N(-)—SO2—)中心的负电荷共轭离域的阴离子,即双(三氟甲基磺酰)亚胺阴离子{[(CF3SO2)2N]-,TFSI-}。该阴离子的负电荷通过磺酰亚胺结构的离域作用分散到4个氧原子、2个硫原子以及1个中心氮原子上。同时,磺酰亚胺结构与两个强吸电子基团(三氟甲基)相连,使负电荷进一步离域化。基于此,1983年,Armand等[46]提出将其锂盐双(三氟甲基磺酰)亚胺锂{[(CF3SO2)2N]Li,LiTFSI}作为SPEs导电锂盐,应用于SSLMBs体系。TFSI-阴离子具有较高的结构柔性,不同的构象异构体之间易于相互转换,有助于降低聚合物链段之间的分子间相互作用强度[47]。与其他锂离子导电SPEs相比,基于LiTFSI的SPEs表现出较高的离子电导率。此外,LiTFSI还具有较高的化学稳定性、热稳定性以及较低的腐蚀性和毒性。得益于上述优点,LiTFSI作为SPEs的导电锂盐,在近30年间获得了广泛的关注和研究[48-54]。特别是,基于LiTFSI/PEO电解质的SSLMBs已作为动力电源和储能装置在电动汽车(Bluecar®)和储能电站(Bluestorage®)等领域中获得了示范性应用[55]。然而,在极性非质子溶剂中(如碳酸酯),全氟代阴离子(TFSI-)基本不参与溶剂化,因而其SPE的阴离子迁移占据主导地位,锂离子迁移数较低(TLi+<0.5),造成浓差极化[56-57]。此外,LiTFSI还原电位较低[58](<0.5 V vs. Li/Li+),难以在金属锂表面发生电化学还原以参与固态电解质界面(solid electrolyte interphase,SEI)膜的构建,因而LiTFSI/PEO电解质与金属锂的界面稳定性较差,导致其SSLMBs的循环和倍率性能不足[59]

近年来,本团队以磺酰亚胺结构(-SO2—N(-)—SO2-)为负电荷中心,通过取代基的结构设计调控基于磺酰亚胺锂盐SPEs的性质,取得了一定的进展。本文结合团队在SPEs导电锂盐领域的相关研究工作,重点介绍了全氟代和部分氟代磺酰亚胺锂盐的最新研究进展,并展望了SPEs导电锂盐的设计策略和未来发展方向,为高性能SSLMBs的研发提供参考。

1 全氟代磺酰亚胺导电锂盐

1.1 含氟磺酰基的全氟代亚胺锂盐

全氟代磺酰亚胺锂盐的结构通式为[(RF1SO2)(RF2SO2)N]Li,其中RF1和RF2为全氟烷基。LiTFSI[RF1̿RF2̿CF3图2(a)]是最具代表性的全氟代磺酰亚胺锂盐。不同于TFSI-结构中的三氟甲基磺酰基(CF3SO2-),氟磺酰亚胺锂盐的氟磺酰(FSO2-)基团具有更小的空间位阻和良好的界面成膜能力,使得该类锂盐显示出特殊的物理及电化学性质[60]。氟磺酰亚胺锂盐的结构通式为[(FSO2)(RFSO2)N]Li,其中RF可以是氟原子{F-,双(氟磺酰)亚胺锂,[(FSO2)2N]Li,LiFSI}[图2(b)]及三氟甲基{CF3-,(氟磺酰)(三氟甲基磺酰)亚胺锂,[(FSO2)(CF3SO2)N]Li,LiFTFSI}[61-62]、五氟乙基{CF3CF2-,(氟磺酰) (五氟乙基磺酰)亚胺锂,[(FSO2)(CF3CF2SO2)N]Li,LiFPFSI}[62]、全氟正丁基{CF3CF2CF2CF-,(氟磺酰)(全氟正丁基磺酰)亚胺锂,[(FSO2)(CF3CF2CF2CF2SO2)N]Li,LiFNFSI}[63]等取代基[图2(c)]。

图2

图2   氟磺酰亚胺类导电锂盐的化学结构

Fig. 2   Chemical structures of fluorinated sulfonimide conducting lithium salts


1962年,Appel等[64]报道了双(氟磺酰)亚胺{[(FSO2)2N]H,HFSI}的合成方法。1995年,Armand等[65]首先将其应用于电池领域。基于LiFSI的有机非水液态电解质表现出优异的离子电导率,并且能够有效地参与电极/电解质界面的建立[66]。2014年,本文作者团队[25]报道了LiFSI/PEO体系的物理及电化学性质。相较于传统的LiTFSI/PEO电解质,LiFSI/PEO显示出更低的玻璃化转变温度{Tg=-45 ℃(LiFSI/PEO) vs. -36 ℃(LiTFSI/PEO);[EO]/[Li]=20,EO单元与锂离子的摩尔比,余同}和更高的离子电导率{80 ℃,>10-3 S/cm(LiFSI/PEO) vs. 1×10-3 S/cm(LiTFSI/PEO),[EO]/[Li]=20}。密度泛函理论(density functional theory,DFT)计算结果表明,由于FSO2-基团更小的空间位阻,氟磺酰亚胺类导电锂盐具有更高的结构柔性,增强了该类阴离子的增塑能力[25]

此外,基于LiFSI的SPEs的金属锂对称电池在高温搁置过程中界面阻抗更加稳定,电池恒电流循环寿命与基于LiTFSI/PEO的电池相比得到有效的增长[如253 h(LiFSI/PEO) vs. 55 h(LiTFSI/PEO)][21]。研究结果表明,LiFSI的还原电位(>1.0 V vs. Li/Li+)显著高于LiTFSI(<0.5 V vs. Li/Li+),并且能够在金属锂表面形成富含无机锂盐氟化锂(LiF)的固体电解质界面[如图3(a)所示][58]。这不仅有效减缓电解质与金属锂的界面副反应,而且一定程度抑制了全固态锂/硫电池中多硫化物的循环穿梭,提高SSLMBs的库仑效率[67][如图3(b)所示]。

图3

图3   (a) LiFTFSILiFSILiTFSI盐的电化学稳定性的化学模拟,参考文献[58]许可转载,版权所有2018年美国化学学会;(b) LiFSI/PEO中致密的SEI保护锂-硫电池中的锂金属免受与多硫化物的副反应的示意图,参考文献[67]许可转载,版权所有2017美国化学学会;(c) 利用LiFSI作为LiTCM/PEO的添加剂提高界面稳定性的示意图,经参考文献[74]许可转载,版权2019爱思唯尔

Fig. 3   (a) Chemical simulation of the electrochemical stabilities of LiFTFSI, LiFSI and LiTFSI salts. Reproduced with permission from Ref.[58]. Copyright 2018 American Chemical Society; (b) Schematic illustration of the impermeable SEI form in LiFSI/PEO to protect lithium metal from the side reactions with polysulfide in lithium-sulfur batteries. Reproduced with permission from Ref.[67]. Copyright 2017 American Chemical Society; (c) Schematic illustration of the enhanced interfacial stability by utilizing LiFSI as additive for LiTCM/PEO. Reproduced with permission from Ref.[74]. Copyright 2019 Elsevier


通过调节氟磺酰亚胺锂盐全氟烷基链RF的结构,能够进一步调节SEI的组成及结构。例如,采用CF3-替代LiFSI中的单个氟原子(即,将F-替代为CF3-,LiFTFSI,化学结构见图2(c)],能够在金属锂电极表面形成更加致密的SEI膜;以CF3CF2CF2CF2-替代LiFSI中的单个氟原子[即LiFNFSI,化学结构见图2(c)],借助其在金属锂表面分解原位生成LiF和含氟聚合物,构筑了兼具柔性和韧性的SEI膜[68-71]。此外,氟磺酰亚胺类导电锂盐中全氟烷基链长度对电解质耐氧化性有显著的影响[59]。随着全氟烷基链的增长(由CF3-增长至CF3CF2CF2CF2-),SPEs的耐氧化性逐渐提高。在1.0 C/1.0 C的充放电倍率下,基于LiFNFSI/PEO的锂/磷酸铁锂电池显示出良好的循环稳定性(>500次)且保持较高的库仑效率(>99%)。

上述研究表明,具有FSO2-基团的氟磺酰亚胺类导电锂盐对金属锂电极相容性良好,通过RF的结构设计,能够有效地调控该类电解质对电极的界面稳定性[60, 66, 68, 72-73]。因此,氟磺酰亚胺锂盐也可以作为电解质添加剂[74][图3(c)],与其他导电锂盐共同使用,以构建基于SPEs的高性能SSLMBs。

1.2 阴离子负电荷超级离域化的全氟代氟磺酰基亚胺锂盐

Armand等[75]提出一种基于磺酰亚胺中心阴离子负电荷超级离域化的全氟磺酰氮超强酸,即[三氟甲基(S-三氟甲基磺酰亚胺)磺酰](三氟甲基磺酰)亚胺,H[CF3SO(=NSO2CF3)2],HsTFSI,并由Yagupolskii等[76]在2005年成功制备。该阴离子[CF3SO(=NSO2CF3)2]-,sTFSI-本质上可看作TFSI-的衍生物,将TFSI-中的一个氧原子替换为强吸电子基团=NSO2CF3,从而改善阴离子的负电荷离域。例如,在低介电常数和非质子溶剂中,H[sTFSI]的酸度高于HTFSI{1,2-二氯乙烷(ClCH2CH2Cl)pKa=-18.0(H[sTFSI]) vs.pKa=-11.9(HTFSI)}[77]

之后,本团队合成了基于[CF3SO(=NSO2CF3)2]-阴离子的锂盐,即[三氟甲基(S-三氟甲基磺酰亚胺)磺酰](三氟甲基磺酰)亚胺锂[CF3SO(=NSO2CF3)2]Li[LisTFSI,图4(a)],并系统评价了其作为导电锂盐应用于LIBs以及SSLMBs的可行性[78-79]。研究表明,相较于LiTFSI,在SPEs体系中,LisTFSI显示出较高的锂离子迁移率[80 ℃,2.5×10-4 S/cm(LisTFSI/PEO) vs. 1.8×10-4 S/cm(LiTFSI/PEO)],见图4(b)。而且,LisTFSI/PEO电解质对金属锂负极显示出良好的化学稳定性[78]。基于上述研究思路和结果,以聚合物锂盐阴离子结构改性为切入点,本团队提出了“超级聚阴离子锂盐”的概念,以期进一步提升锂单离子导电SPEs的性能[80]。在磺酰亚胺阴离子[CF3SO2N(-)SO2—]中心上,采用强吸电子基团三氟甲基磺酰基(=NSO2CF3)取代其中的一个氧原子,进一步提升了阴离子负电荷的离域化程度,制备了基于阴离子负电荷超级离域化的聚阴离子锂盐[聚(对苯乙烯磺酰)(三氟甲基(S-三氟甲基磺酰亚胺基)磺酰)亚胺锂,LiPsTFSI,图4(c)]。在70 ℃时,LiPSsTFSI/PEO电解质的离子电导率可达10-4 S/cm,TLi+达到0.91[80]。这一结果证实,通过阴离子负电荷共轭离域化,降低锂盐解离能,是改善SPEs性能的有效途径之一。

图4

图4   (a) 负电荷超级离域的阴离子的设计策略,经参考文献[78]许可转载,版权2021约翰威立父子公司;(b) LiX/PEO(X=sTFSI, BETI, TFSI, FSI)电解质80 ℃时的锂离子电导率,经参考文献[78]许可转载,版权2021约翰威立父子公司;(c) 负电荷超级离域的锂单离子导体阴离子的设计策略

Fig. 4   (a) Design strategy of the anion with extremely delocalized negative charge. Reproduced with permission from Ref.[78]. Copyright 2021 John Wiley & Sons, Inc.; (b) Li+ ion only (σLi+) conductivity of LiX/PEO (X=sTFSI, BETI, TFSI and FSI) at 80. Reproduced with permission from Ref.[78]. Copyright 2021 John Wiley & Sons, Inc.; (c) Design strategy of the anion with extremely delocalized negative charge in the single Li-ion conductors


2 部分氟代磺酰亚胺导电锂盐

全氟代磺酰亚胺导电锂盐具有较高的氧化电位(>4.5 V vs. Li/Li+),将其引入到SPE体系中,显著提升了SPEs的离子传输性质或电极/电解质的界面性能。然而,该类SPEs为典型的双离子导体体系,具有较低的锂离子迁移数(TLi+<0.5)[25]。充放电过程中,由于阴、阳离子差异化的离子迁移率,电极界面存在严重的浓差极化,导致锂枝晶的生成以及较差的电化学性能。

基于全氟代磺酰亚胺锂盐和聚醚基体构筑的SPEs是一类典型的“耦合”体系,Li+与聚合物基体具有较强的相互作用,而阴离子基本不参与溶剂化[8, 81-84]。因此,该类电解质显示出较低的TLi+。本团队对磺酰亚胺锂盐阴离子的分子结构进行设计(图5),利用部分氟代的策略,增加阴离子与聚合物基体的相互作用,从而提高Li+输运选择性。

图5

图5   部分氟代磺酰亚胺类导电锂盐的化学结构

Fig. 5   Chemical structures of partially fluorinated sulfonimide conducting lithium salts


2019年,本团队[85]合成了含有双(甲氧基乙基)氨基的磺酰亚胺锂盐{[(CF3SO2)((CH3OCH2CH2)2NSO2)N]Li,LiEFA},化学结构见图5。分子动力学模拟结果显示,EFA-与PEO之间存在分子间氢键作用力,能够降低阴离子的迁移率。因此,LiEFA/PEO体系的TLi+可以达到0.4左右[图6(a)和(b)]。另一方面,设计合成了一系列含二氟甲基(CF2H-)基团的磺酰亚胺锂盐,如(三氟甲基磺酰基)(二氟甲基磺酰)亚胺阴离子{[(CF3SO2)(CF2HSO2)N]-,DFTFSI-}、双(二氟甲基磺酰)亚胺阴离子{[(CF2HSO2)2N]-,DFSI-},双(甲基磺酰)亚胺阴离子{[(CH3SO2)2N]-,MSI-}等[86-88]图5。研究表明,锂盐阴离子结构中的氢原子能与PEO形成分子间氢键,从而抑制阴离子的迁移,提高锂离子电导率[图6(c)][86]。尽管锂盐阴离子的耐氧化稳定性随着氢原子数目的增加而降低,但仍能满足3 V级(硫正极)和3.5 V级(LiFePO4正极)SSLMBs的要求[图6(d)][86]。特别是,该类锂盐还表现出良好的界面性能,借助阴离子在金属锂表面电化学还原,生成LiF和LiH等SEI组分,改善了锂负极/SPEs的界面稳定性,从而改善了固态锂/硫电池的循环性能[87],如图6(e)所示。

图6

图6   (a) 代表性盐溶聚合物电解质的锂离子电导率,参考文献[75]许可转载,版权2018约翰威立父子公司;(b) LiEFA/PEO电解质中阴离子与聚合物基体间相互作用,参考文献[75]许可转载,版权2021约翰威立父子公司;(c) LiDFTFSI/PEOLiMTFSI/PEOLiMSI/PEO电解质的锂离子电导率,参考文献[76]许可转载,版权2018约翰威立父子公司;(d) 基于LiDFTFSI/PEOLiMTFSI/PEOLiMSI/PEO电解质耐氧化稳定性,参考文献[76]许可转载,版权2018约翰威立父子公司;(e) LiDFTFSI/PEO电解质抑制多硫化物穿梭的机理,参考文献[77]许可转载,版权2019爱思唯尔

Fig. 6   (a) Lithium-ion conductivities of the state-of-art SPEs. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (b) Schematic illustration of the interaction between EFA-anion and PEO. Reproduced with permission from Ref.[75]. Copyright 2000 John Wiley & Sons, Inc.; (c) Lithium-ion conductivities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (d) Schematic illustration on the anodic stabilities of LiDFTFSI/PEO, LiMTFSI/PEO, and LiMSI/PEO. Reproduced with permission from Ref.[76]. Copyright 2000 John Wiley & Sons, Inc.; (e) Schematic illustration of blocking the shuttle effect of polysulfide in LiDFTFSI/PEO electrolyte. Reproduced with permission from Ref.[77]. Copyright 2019 Elsevier


总体而言,由于磺酰亚胺结构[-SO2—N(-)—SO2-]的负电荷高度离域,基于磺酰亚胺类锂盐的SPEs表现出较强的离子导电能力。并且,通过对锂盐阴离子结构进行巧妙的设计,引入特定的基团,能够有效提高锂离子电导率和调控电极/电解质界面性能,从而提升全固态金属锂电池的化学和电化学性能。

3 总结

与传统液态电解液相比,SPEs具有良好的结构设计性、较高的本征安全性等优势。尽管基于SPEs的SSLMBs的应用可行性得到了初步验证,但要获得规模化产业应用,需要进一步提升电解质的本征特性以及改善电极/电解质的界面相容性。从锂盐阴离子分子结构设计的角度考虑,在磺酰亚胺(-SO2N(-)SO2-)结构的基础上,提高阴离子负电荷的离域化程度,以及引入具有成膜性的官能团,有望进一步提升SPEs的离子电导率,并显著改善电极/电解质的界面性能等,从而提升基于SPEs的SSLMBs的能量密度和功率密度。总之,进一步加强学术界和产业界的交流,基于针对SPEs的SSLMBs实际应用场景需求,通过导电锂盐的分子结构设计调控SPEs的性质,有助于促进SSLMBs技术的快速发展。

参考文献

TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.

[本文引用: 1]

吴娇杨, 刘品, 胡勇胜, 等. 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4): 443-453.

WU J Y, LIU P, HU Y S, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4): 443-453.

QIAO L X, JUDEZ X, ROJO T, et al. Review—Polymer electrolytes for sodium batteries[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab7aao.

杜奥冰, 柴敬超, 张建军, 等. 锂电池用全固态聚合物电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 627-648.

DU A B, CHAI J C, ZHANG J J, et al. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends[J]. Energy Storage Science and Technology, 2016, 5(5): 627-648.

张丙凯, 杨卢奕, 李舜宁, 等. 固态电解质中锂离子传输机理研究进展[J]. 电化学, 2021, 27(3): 269-277.

ZHANG B K, YANG L Y, LI S N, et al. Progress of lithium-ion transport mechanism in solid-state electrolytes[J]. Journal of Electrochemistry, 2021, 27(3): 269-277.

李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5): 607-614.

[本文引用: 1]

LI H, XU X X. R & D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 607-614.

[本文引用: 1]

梁大宇, 包婷婷, 高田慧, 等. 锂离子电池固态电解质界面膜(SEI)的研究进展[J]. 储能科学与技术, 2018, 7(3): 418-423.

LIANG D Y, BAO T T, GAO T H, et al. Research progress of lithium ion battery solid-electrolyte interface(SEI)[J]. Energy Storage Science and Technology, 2018, 7(3): 418-423.

凌志军, 何向明, 李建军, 等. 锂离子聚合物常温固体电解质的研究进展[J]. 化学进展, 2006, 18(4): 459-466.

[本文引用: 1]

LING Z J, HE X M, LI J J, et al. Recent advances of all-solid-state polymer electrolyte for Li-ion batteries[J]. Progress in Chemistry, 2006, 18(4): 459-466.

[本文引用: 1]

邹文洪, 樊佑, 张焱焱, 等. 安全固态锂电池室温聚合物基电解质的研究进展[J]. 化工进展, 2021, 40(9): 5029-5044.

[本文引用: 1]

ZOU W H, FAN Y, ZHANG Y Y, et al. Research progress on room-temperature polymer-based electrolytes for safe solid-state lithium batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5029-5044.

[本文引用: 1]

刘大凡. 新型含氟磺酰亚胺锂盐聚合物固体电解质研究[D]. 武汉: 华中科技大学, 2005.

LIU D F. Characterizations of lithium perfluoro-alkoxy (-phenoxy) sulfonylimides for solid polymer electrolytes[D]. Wuhan: Huazhong University of Science and Technology, 2005.

何向明, 蒲薇华, 王莉, 等. 锂离子塑性晶体常温固体电解质[J]. 化学进展, 2006, 18(1): 24-29.

HE X M, PU W H, WANG L, et al. Plastic crystals: An effective ambient temperature all-solid-state electrolyte for lithium batteries[J]. Progress in Chemistry, 2006, 18(1): 24-29.

崔孟忠, 李竹云, 张洁, 等. 硅氧烷基聚合物电解质[J]. 化学进展, 2008, 20(12): 1987-1997.

CUI M Z, LI Z Y, ZHANG J, et al. Siloxane-based polymer electrolytes[J]. Progress in Chemistry, 2008, 20(12): 1987-1997.

张恒, 郑丽萍, 聂进, 等. 锂单离子导电固态聚合物电解质[J]. 化学进展, 2014, 26(6): 1005-1020.

[本文引用: 1]

ZHANG H, ZHENG L P, NIE J, et al. Single lithium-ion conducting solid polymer electrolytes[J]. Progress in Chemistry, 2014, 26(6): 1005-1020.

[本文引用: 1]

BRESSER D, HOSOI K, HOWELL D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA[J]. Journal of Power Sources, 2018, 382: 176-178.

[本文引用: 1]

FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589.

[本文引用: 1]

KÄRGER J. Fast ion transport in solids[J]. Zeitschrift Für Physikalische Chemie, 1995, 189(2): 274-275.

[本文引用: 1]

ARMAND M, CHABAGNO J, DUCLOT M. Second International Meeting on Solid Electrolytes [C]//St.Andrews, 1978.

[本文引用: 1]

ARMAND M B. Polymer electrolytes[J]. Annual Review of Materials Science, 1986, 16: 245-261.

[本文引用: 1]

XUE Z G, HE D, XIE X L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253.

HALLINAN D T Jr, VILLALUENGA I, BALSARA N P. Polymer and composite electrolytes[J]. MRS Bulletin, 2018, 43(10): 759-767.

张恒. 含双(氟磺酰)亚胺阴离子的纯固态聚合物电解质的制备、表征及性质[D]. 武汉: 华中科技大学, 2015.

[本文引用: 1]

ZHANG H. Solid polymer electrolytes based on bis(fluorosulfonyl)imide anion: Synthesis, characterization, and properties[D]. Wuhan: Huazhong University of Science and Technology, 2015.

[本文引用: 1]

吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103.

WU X, ZHOU L, XUE Z M. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts[J]. Energy Storage Science and Technology, 2021, 10(1): 96-103.

ZHANG H, FENG W F, ZHOU Z B, et al. Composite electrolytes of lithium salt/polymeric ionic liquid with bis(fluorosulfonyl)imide[J]. Solid State Ionics, 2014, 256: 61-67.

ZHANG H, LI L, FENG W F, et al. Polymeric ionic liquids based on ether functionalized ammoniums and perfluorinated sulfonimides[J]. Polymer, 2014, 55(16): 3339-3348.

ZHANG H, LIU C Y, ZHENG L P, et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte[J]. Electrochimica Acta, 2014, 133: 529-538.

[本文引用: 3]

ZHANG H, LIU C Y, ZHENG L P, et al. Solid polymer electrolyte comprised of lithium salt/ether functionalized ammonium-based polymeric ionic liquid with bis(fluorosulfonyl)imide[J]. Electrochimica Acta, 2015, 159: 93-101.

程新兵, 张强. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.

CHENG X B, ZHANG Q. Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Progress in Chemistry, 2018, 30(1): 51-72.

赵辰孜, 袁洪, 卢洋, 等. 固态金属锂负极界面研究进展[J]. 化工进展, 2021, 40(9): 4986-4997.

ZHAO C Z, YUAN H, LU Y, et al. Review on interfaces in solid-state lithium metal anodes[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4986-4997.

HE X, NI Y X, HOU Y P, et al. Insights into the ionic conduction mechanism of quasi-solid polymer electrolytes through multispectral characterization[J]. Angewandte Chemie International Edition, 2021, 60(42): 22672-22677.

[本文引用: 1]

XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. ChemInform, 2004, 104(10): 4303-4418.

[本文引用: 2]

QIAO L X, CUI Z L, CHEN B B, et al. A promising bulky anion based lithium borate salt for lithium metal batteries[J]. Chemical Science, 2018, 9(14): 3451-3458.

WANG C, WANG T, WANG L L, et al. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery[J]. Advanced Science, 2019, 6(22): doi: 10.1002/advs.201901036.

SHANGGUAN X H, XU G J, CUI Z L, et al. Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium-metal batteries[J]. Small, 2019, 15(16): doi: 10.1002/smll.201900269.

WANG Q L, CUI Z L, ZHOU Q, et al. A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries[J]. Energy Storage Materials, 2020, 25: 756-763.

ZHOU M H, LIU R L, JIA D Y, et al. Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultralong-life and dendrite-free lithium-metal batteries[J]. Advanced Materials, 2021, 33(29): doi: 10.1002/adma.202100943.

[本文引用: 1]

DESHPANDE V K, SINGH K. Effect of LiX(X=F, Cl, Br, I) and Na2SO4 on the electrical conducticity of Li2SO4: Li2CO3 eutectic[J]. Solid State Ionics, 1983, 8(4): 319-322.

[本文引用: 1]

HENDERSON W A. Crystallization kinetics of Glyme-LiX and PEO-LiX polymer electrolytes[J]. Macromolecules, 2007, 40(14): 4963-4971.

[本文引用: 2]

NEWMAN G H, FRANCIS R W, GAINES L H, et al. Hazard investigations of LiClO4/dioxolane electrolyte[J]. Journal of the Electrochemical Society, 1980, 127(9): 2025-2027.

[本文引用: 1]

ROBITAILLE C D, FAUTEUX D. Phase diagrams and conductivity characterization of some PEO-LiX electrolytes[J]. Journal of the Electrochemical Society, 1986, 133(2): 315-325.

[本文引用: 1]

BANDARA L R A K, DISSANAYAKE M A K L, MELLANDER B E. Ionic conductivity of plasticized(PEO)-LiCF3SO3 electrolytes[J]. Electrochimica Acta, 1998, 43(10/11): 1447-1451.

[本文引用: 1]

SØRENSEN P R, JACOBSEN T. Phase diagram and conductivity of the polymer electrolyte: PEO_RLiCF3SO3[J]. Polymer Bulletin, 1983, 9(1/2/3): 47-51.

[本文引用: 1]

WESTON J E, STEELE B C H. Thermal history—conductivity relationship in lithium salt-poly (ethylene oxide) complex polymer electrolytes[J]. Solid State Ionics, 1981, 2(4): 347-354.

[本文引用: 1]

ANGELL C A, LIU C, SANCHEZ E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity[J]. Nature, 1993, 362(6416): 137-139.

[本文引用: 1]

ARAVINDAN V, GNANARAJ J, MADHAVI S, et al. Lithium-ion conducting electrolyte salts for lithium batteries[J]. Chemistry-A European Journal, 2011, 17(51): 14326-14346.

[本文引用: 1]

MEUSSDORFFER J N N. Bisperfluorakansulfonylimide (RfSO2)2NH[J]. Chemiker Zeitung, 1972, 96: 582.

[本文引用: 1]

ARMAND M, MOURSLI F E K C, Agence Nationale de Valorisation de la Recherche[R]. France. 1983.

[本文引用: 1]

ZHANG H, CHEN F F, CARRASCO J. Nanoscale modelling of polymer electrolytes for rechargeable batteries[J]. Energy Storage Materials, 2021, 36: 77-90.

[本文引用: 1]

陈兵兵, 赵井文, 马君, 等. PEO/LITFSI固态电解质的离子传输与压力构效关系[J]. 储能科学与技术, 2018, 7(3): 431-436.

[本文引用: 1]

CHEN B B, ZHAO J W, MA J, et al. Relationship of ion transport and pressure in PEO/LITFSI solid electrolytes[J]. Energy Storage Science and Technology, 2018, 7(3): 431-436.

[本文引用: 1]

CHEN D D, HUANG S, ZHONG L, et al. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture[J]. Advanced Functional Materials, 2020, 30(7): doi: 10.1002/adfm.201907717.

ZHOU Q, MA J, DONG S M, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials, 2019, 31(50): doi: 10.1002/adma.201902029.

MAUREL A, ARMAND M, GRUGEON S, et al. Poly(ethylene oxide)-LiTFSI solid polymer electrolyte filaments for fused deposition modeling three-dimensional printing[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab7c38.

WANG C, ZHANG H R, DONG S M, et al. High polymerization conversion and stable high-voltage chemistry underpinning an in situ formed solid electrolyte[J]. Chemistry of Materials, 2020, 32(21): 9167-9175.

WEN B, DENG Z, TSAI P C, et al. Ultrafast ion transport at a cathode-electrolyte interface and its strong dependence on salt solvation[J]. Nature Energy, 2020, 5(8): 578-586.

XI G, XIAO M, WANG S J, et al. Polymer-based solid electrolytes: Material selection, design, and application[J]. Advanced Functional Materials, 2021, 31(9): doi: 10.1002/adfm.202007598.

[本文引用: 1]

ZHANG H, ARMAND M. History of solid polymer electrolyte-based solid-state lithium metal batteries: A personal account[J]. Israel Journal of Chemistry, 2021, 61(1/2): 94-100.

[本文引用: 1]

GORECKI W, ROUX C, CLÉMANCEY M, et al. NMR and conductivity study of polymer electrolytes in the imide family: P(EO)/Li[N(SO2CnF2 n+1)(SO2CmF2 m+1)‍[J]. ChemPhysChem, 2002, 3(7): 620-625.

[本文引用: 1]

ZHANG H, LI C M, PISZCZ M, et al. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives[J]. Chemical Society Reviews, 2017, 46(3): 797-815.

[本文引用: 1]

ESHETU G G, JUDEZ X, LI C M, et al. Ultrahigh performance all solid-state lithium sulfur batteries: Salt anion's chemistry-induced anomalous synergistic effect[J]. Journal of the American Chemical Society, 2018, 140(31): 9921-9933.

[本文引用: 4]

TONG B, WANG P, MA Q, et al. Lithium fluorinated sulfonimide-based solid polymer electrolytes for Li || LiFePO4 cell: The impact of anionic structure[J]. Solid State Ionics, 2020, 358: doi: 10.1016/j.ssi.2020.115519.

[本文引用: 2]

ZHANG H, FENG W F, NIE J, et al. Recent progresses on electrolytes of fluorosulfonimide anions for improving the performances of rechargeable Li and Li-ion battery[J]. Journal of Fluorine Chemistry, 2015, 174: 49-61.

[本文引用: 2]

HOWELLS R D, LAMANNA W M, FANTA A D, et al. Preparation of bis (fluoroalkylenesulfonyl) imides and (fluoroalkysulfony) (fluorosulfonyl) imides: US5874616[P]. 1999-02-23.

[本文引用: 1]

HAN H B, ZHOU Y X, LIU K, et al. Efficient preparation of (fluorosulfonyl) (pentafluoroethanesulfonyl)imide and its alkali salts[J]. Chemistry Letters, 2010, 39(5): 472-474.

[本文引用: 2]

HAN H B, GUO J, ZHANG D J, et al. Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells[J]. Electrochemistry Communications, 2011, 13(3): 265-268.

[本文引用: 1]

APPEL ‍R,EISENHAUER ‍G. ‍Die ‍synthese des imidobisschwefelsäurefluorids, HN(SO2F)2[J]. Chemische Berichte, 1962, 95(1): 246-248.

[本文引用: 1]

MICHOT C, ARMAND M, SANCHEZ J Y, CHOQUETTE Y, GAUTHIER M, Ionic conducting material having good anticorrosive properties: WO 9526056A1[P].1995-09-28.

[本文引用: 1]

HAN H B, ZHOU S S, ZHANG D J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196(7): 3623-3632.

[本文引用: 2]

JUDEZ X, ZHANG H, LI C M, et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li-S cell[J]. The Journal of Physical Chemistry Letters, 2017, 8(9): 1956-1960.

[本文引用: 3]

ZHENG L P, ZHANG H, CHENG P F, et al. Li [(FSO2)(n-C4F9SO2)N]versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis[J]. Electrochimica Acta, 2016, 196: 169-188.

[本文引用: 2]

FANG Z, MA Q, LIU P, et al. Novel concentrated Li [(FSO2)(n-C4 F9 SO2)N]-based ether electrolyte for superior stability of metallic lithium anode[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4282-4289.

TONG B, HUANG J, ZHOU Z B, et al. The salt matters: Enhanced reversibility of Li-O2 batteries with a Li [(CF3SO2)(n-C4F9SO2)N]-based electrolyte[J]. Advanced Materials, 2018, 30(1): doi: 10.1002/adma.201704841.

TONG B, WANG J W, LIU Z J, et al. (CH3)3Si-N [(FSO2)(n-C4F9SO2)]: An additive for dendrite-free lithium metal anode[J]. Journal of Power Sources, 2018, 400: 225-231.

[本文引用: 1]

ZHOU S, HAN H, NIE J, et al. Improving the high-temperature resilience of LiMn2O4 based batteries: LiFNFSI an effective salt[J]. Journal of The Electrochemical Society, 2012, 159 (8): A1158-A1164.

[本文引用: 1]

SONG Z Y, WANG X X, WU H, et al. Bis(fluorosulfonyl)imide-based electrolyte for rechargeable lithium batteries: A perspective[J]. Journal of Power Sources Advances, 2022, 14: doi:10.1016/j.powera.2022.100088.

[本文引用: 1]

SANTIAGO A, JUDEZ X, CASTILLO J, et al. Improvement of lithium metal polymer batteries through a small dose of fluorinated salt[J]. The Journal of Physical Chemistry Letters, 2020, 11(15): 6133-6138.

[本文引用: 3]

GARLYAUSKAYTE R Y, BEZDUDNY A V, MICHOT C, et al. Efficient synthesis of N-(trifluoromethylsulfonyl)trifluoromethanesulfonimidoyl fluoride-the key agent in the preparation of compounds with superstrong electron-withdrawing groups and strong acidic properties[J]. J Chem Soc, Perkin Trans 1, 2002(16): 1887-1889.

[本文引用: 5]

GARLYAUSKAYTE R Y, CHERNEGA A N, MICHOT C, et al. Synthesis of new organic super acids—N-(trifluoromethylsulfonyl)imino derivatives of trifluoromethanesulfonic acid and bis(trifluoromethylsulfonyl)imide[J]. Organic & Biomolecular Chemistry, 2005, 3(12): 2239.

[本文引用: 5]

KÜTT A, RODIMA T, SAAME J, et al. Equilibrium acidities of superacids[J]. The Journal of Organic Chemistry, 2011, 76(2): 391-395.

[本文引用: 3]

ZHANG H, SONG Z Y, YUAN W M, et al. Impact of negative charge delocalization on the properties of solid polymer electrolytes[J]. ChemElectr℃hem, 2021, 8(7): 1322-1328.

[本文引用: 6]

ZHANG H, HAN H B, CHENG X R, et al. Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2015, 296: 142-149.

[本文引用: 1]

MA Q, ZHANG H, ZHOU C W, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie International Edition, 2016, 55(7): 2521-2525.

[本文引用: 2]

MCLIN M G, ANGELL C A. Frequency-dependent conductivity, relaxation times, and the conductivity/viscosity coupling problem, in polymer-electrolyte solutions: LiClO4 and NaCF3SO3 in PPO 4000[J]. Solid State Ionics, 1992, 53/54/55/56: 1027-1036.

[本文引用: 1]

ANGELL C A, FAN J, LIU C L, et al. Li-conducting ionic rubbers for lithium battery and other applications[J]. Solid State Ionics, 1994, 69(3/4): 343-353.

FORSYTH M, SUN J Z, MACFARLANE D R, et al. Compositional dependence of free volume in PAN/LiCF3SO3 polymer-in-salt electrolytes and the effect on ionic conductivity[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(2): 341-350.

WRIGHT P V. Developments in polymer electrolytes for lithium batteries[J]. MRS Bulletin, 2002, 27(8): 597-602.

[本文引用: 1]

ZHANG H, CHEN F F, LAKUNTZA O, et al. Suppressed mobility of negative charges in polymer electrolytes with an ether-functionalized anion[J]. Angewandte Chemie International Edition, 2019, 58(35): 12070-12075.

[本文引用: 1]

ZHANG H, OTEO U, ZHU H J, et al. Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion[J]. Angewandte Chemie International Edition, 2019, 58(23): 7829-7834.

[本文引用: 3]

ZHANG H, OTEO U, JUDEZ X, et al. Designer anion enabling solid-state lithium-sulfur batteries[J]. Joule, 2019, 3(7): 1689-1702.

[本文引用: 1]

QIAO L X, OTEO U, ZHANG Y, et al. Trifluoromethyl-free anion for highly stable lithium metal polymer batteries[J]. Energy Storage Materials, 2020, 32: 225-233.

[本文引用: 1]

/