Aqueous organic redox flow batteries (AORFBs) represent a promising technology for large-scale storage and efficient utilization of renewable energy. In this paper, we thoroughly review organic electroactive species against four important performance parameters (energy density, power density, efficiency, and cycle life), based on the current status of AORFB research. For the different organic electroactive molecules, we clarify the effects on AORFB performance of solubility, potential, electron number, electrochemical redox kinetics, size, and chemical stability. The development of AORFBs shows favorable prospects relative to lithium iron phosphate batteries, lead carbon batteries, and all-vanadium redox flow batteries. AORFBs with energy density ≥30 Wh/L, maximum discharge power density ≥300 mW/cm2, energy efficiency ≥80%, and capacity retention rate ≤0.05%/d can be expected to compete in the long-term energy storage market.
Keywords:aqueous organic redox flow batteries
;
energy density
;
power density
;
efficiency
;
cycle life
PENG Kang. Status and prospects of organic eletroactive species for aqueous organic redox flow batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1246-1263
Fig. 5
(a) Schematic of AQDS/HBr cell[23]; (b) Cyclic voltammogram of AQDS and DHAQDS[23]; (c) Synthesis of AQDSNH4 and AQS(NH4)2[27]; (d) A comparison of the solubility of AQSNa, AQSNH4, AQDSNa2, and AQDS(NH4)2[27]
Fig. 6
(a) Photograph of a solution containing 4.3 mol/L 4-OH-TEMPO in 3 mol/kg BMImCl/H2O at room temperature[43]; (b) Schematic illustration of the interactions between the imidazolium group and the organic solute[43]; (c) Hydrotropic solubilization for hybrid ion redox flow batteries[45]
Fig. 7
Cyclic voltammograms of (a) DMBQ and (b) DMOBQ on glassy carbon electrode; (c) DMBQ on glassy carbon electrode coated with N/S-CMRs, respectively[52]
Fig. 8
Schematic of cells, polarization curves of the assembled cells, and experimental and fitted electrochemical impedance spectroscopy (EIS) of the assembled cells[52]
Fig. 11
(a) Energy efficiency vs. the cycle number from 40 to 100 mA/cm2 of the FcNCl/MV AORFBs with different membranes using 2.0 mol/L NaCl supporting electrolyte[53]; (b) Energy efficiency of the 4-OH-TEMPO/MV batteries with QPFPAE-x and DSV membranes from 20 to 200 mA/cm2[54]
Fig. 12
(a) Schematic of K4[Fe(CN)6]/DHAQ cell; (b) Energy efficiency of K4[Fe(CN)6]/DHAQ cells assembled with Nafion 117, membranes from SPX-HFP-0.63, SPX-BP-0.61, as functions of current density; (c) Long-term galvanostatic cycling of a K4[Fe(CN)6]/DHAQ cell assembled with SPX-BP-0.95 at 60 mA/cm2[14]
Fig. 13
(a) The schematic of the full cell (1.51 V) and the corresponding half-cell reactions; (b) cycling performance at 60 mA/cm2; (c) corresponding efficiencies (CE: coulombic efficiency, VE: voltage efficiency, EE: energy efficiency) at different current densities[32]
Fig. 15
(a) Proposed decomposition mechanisms for 2,6-DBEAQ[56]; (b) Synthetic route for 2,6-DPPEAQ[56]; (c) Performance of 2,6-DBEAQ/K4Fe(CN)6 cell[26]; (d) Performance of 2,6-DPPEAQ/K4Fe(CN)6 cell[56]; (e) Synthetic route for DPivOHAQ and DBAQ, and Performance of 2,6- DPivOHAQ/K4Fe(CN)6 cell[57]
Fig. 18
(a) Working principle of hydrophilic microporous membranes for fast ion transport and high ionic and molecular selectivity; Cycling stability of (b) FMN-Na/K4Fe(CN)6 and (c) 2,6-DHAQ/K4Fe(CN)6 batteries with various membranes[61]
Fig. 19
Discharge capacity and Coulombic efficiency (CE) and are plotted as functions of time and cycle number with (a) carbon paper or (b) carbon cloth as electrode[42]
ERICKSON P, LAZARUS M, PIGGOT G. Limiting fossil fuel production as the next big step in climate policy[J]. Nature Climate Change, 2018, 8: 1037 -1043 .
RINNE E, HOLTTINEN H, KIVILUOMA J, et al. Effects of turbine technology and land use on wind power resource potential[J]. Nature Energy, 2018, 3 (6 ): 494 -500.
PARK M, RYU J, WANG W, et al. Material design and engineering of next-generation flow-battery technologies[J]. Nature Reviews Materials, 2017, 2: doi:10.1038/natrevmats.2016.80.
CAO J Y, TIAN J Y, XU J, et al. Organic flow batteries: Recent progress and perspectives[J]. Energy & Fuels, 2020, 34(11): 13384-13411.
LI Z J, LU Y C. Material design of aqueous redox flow batteries: Fundamental challenges and mitigation strategies[J]. Advanced Materials, 2020, 32(47): doi: 10.1002/adma.202002132.
KWON G, KO Y, KIM Y, et al. Versatile redox-active organic materials for rechargeable energy storage[J]. Accounts of Chemical Research, 2021, 54(23): 4423-4433.
FANG X T, LI Z G, ZHAO Y Y, et al. Multielectron organic redoxmers for energy-dense redox flow batteries[J]. ACS Materials Letters, 2022, 4(2): 277-306.
WINSBERG J, HAGEMANN T, JANOSCHKA T, et al. Redox-flow batteries: from metals to organic redox-active materials[J]. Angewandte Chemie (International Ed in English), 2017, 56(3): 686-711.
YANG Z J, GUO R, MALPASS-EVANS R, et al. Highly conductive anion-exchange membranes from microporous tröger's base polymers[J]. Angewandte Chemie (International Ed in English), 2016, 55(38): 11499-11502.
ZUO P P, LI Y Y, WANG A Q, et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage[J]. Angewandte Chemie (International Ed in English), 2020, 59(24): 9564-9573.
JANOSCHKA T, MARTIN N, MARTIN U, et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials[J]. Nature, 2015, 527: 78 -81.
LIU T B, WEI X L, NIE Z M, et al. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte[J]. Advanced Energy Materials, 2016, 6(3): doi: 10.1002/aenm.201501449.
JANOSCHKA T, MARTIN N, HAGER M D, et al. An aqueous redox-flow battery with high capacity and power: The TEMPTMA/MV system[J]. Angewandte Chemie (International Ed in English), 2016, 55(46): 14427-14430.
HU B, DEBRULER C, RHODES Z, et al. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage[J]. Journal of the American Chemical Society, 2017, 139(3): 1207-1214.
BEH E S, DE PORCELLINIS D, GRACIA R L, et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention[J]. ACS Energy Letters, 2017, 2(3): 639-644.
ZHANG C K, NIU Z H, PENG S S, et al. Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(24): doi: 10.1002/adma.201901052.
YANG Z J, TONG L C, TABOR D P, et al. Alkaline benzoquinone aqueous flow battery for large-scale storage of electrical energy[J]. Advanced Energy Materials, 2018, 8(8): doi:10.1002/aenm.201702056.
HU B, LUO J, HU M W, et al. A pH-neutral, metal-free aqueous organic redox flow battery employing an ammonium anthraquinone anolyte[J]. Angewandte Chemie (International Ed in English), 2019, 58(46): 16629-16636.
HU B, TANG Y J, LUO J, et al. Improved radical stability of viologen anolytes in aqueous organic redox flow batteries[J]. Chemical Communications (Cambridge, England), 2018, 54(50): 6871-6874.
LIU Y H, LI Y Y, ZUO P P, et al. Screening viologen derivatives for neutral aqueous organic redox flow batteries[J]. ChemSusChem, 2020, 13(9): 2245-2249.
HUANG J H, HU S Z, YUAN X Z, et al. Radical stabilization of a tripyridinium-triazine molecule enables reversible storage of multiple electrons[J]. Angewandte Chemie (International Ed in English), 2021, 60(38): 20921-20925.
HUANG M B, HU S Z, YUAN X Z, et al. Five-membered-heterocycle bridged viologen with high voltage and superior stability for flow battery[J]. Advanced Functional Materials, 2022: doi:10.1002/adfm.202111744.
LUO J, HU B, DEBRULER C, et al. A π-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries[J]. Angewandte Chemie (International Ed in English), 2018, 57(1): 231-235.
HU S Z, LI T Y, HUANG M B, et al. Phenylene-bridged bispyridinium with high capacity and stability for aqueous flow batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(7): doi: 10.1002/adma.202005839.
LIANG Y, JING Y, GHEYTANI S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials, 2017, 16 (8 ): 841 -848.
ZHAO Q, ZHU Z, CHEN J. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2017, 29(48): doi: 10.1002/adma.201607007.
HAN C P, LI H F, SHI R Y, et al. Organic quinones towards advanced electrochemical energy storage: Recent advances and challenges[J]. Journal of Materials Chemistry A, 2019, 7(41): 23378-23415.
KWON G, LEE K, LEE M H, et al. Bio-inspired molecular redesign of a multi-redox catholyte for high-energy non-aqueous organic redox flow batteries[J]. Chem, 2019, 5(10): 2642-2656.
CHAI J C, WANG X, LASHGARI A, et al. A pH-neutral, aqueous redox flow battery with a 3600-cycle lifetime: Micellization-enabled high stability and crossover suppression[J]. ChemSusChem, 2020, 13(16): 4069-4077.
GERKEN J B, ANSON C W, PREGER Y, et al. Comparison of quinone-based catholytes for aqueous redox flow batteries and demonstration of long-term stability with tetrasubstituted quinones[J]. Advanced Energy Materials, 2020, 10(20): doi:10.1002/aenm. 202000340.
ROMADINA E I, KOMAROV D S, STEVENSON K J, et al. New phenazine based anolyte material for high voltage organic redox flow batteries[J]. Chemical Communications (Cambridge, England), 2021, 57(24): 2986-2989.
XU J C, PANG S, WANG X Y, et al. Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures[J]. Joule, 2021, 5(9): 2437-2449.
HUANG Z F, KAY C W M, KUTTICH B, et al. An "interaction-mediating" strategy towards enhanced solubility and redox properties of organics for aqueous flow batteries[J]. Nano Energy, 2020, 69: doi: 10.1016/j.nanoen.2020.104464.
ZHANG S Z, WANG G M, LU Y X, et al. The interactions between imidazolium-based ionic liquids and stable nitroxide radical species: a theoretical study[J]. The Journal of Physical Chemistry A, 2016, 120(30): 6089-6102.
DING Y, ZHANG C K, ZHANG L Y, et al. Insights into hydrotropic solubilization for hybrid ion redox flow batteries[J]. ACS Energy Letters, 2018, 3(11): 2641-2648.
ZHANG C K, ZHANG L Y, YU G H. Eutectic electrolytes as a promising platform for next-generation electrochemical energy storage[J]. Accounts of Chemical Research, 2020, 53(8): 1648-1659.
ZHANG C K, ZHANG L Y, DING Y, et al. Eutectic electrolytes for high-energy-density redox flow batteries[J]. ACS Energy Letters, 2018, 3(12): 2875-2883.
ZHANG C K, QIAN Y M, DING Y, et al. Biredox eutectic electrolytes derived from organic redox-active molecules: High-energy storage systems[J]. Angewandte Chemie (International Ed in English), 2019, 58(21): 7045-7050.
ZHOU M Y, CHEN Y, SALLA M, et al. Single-molecule redox-targeting reactions for a pH-neutral aqueous organic redox flow battery[J]. Angewandte Chemie (International Ed in English), 2020, 59(34): 14286-14291.
CHEN Y, ZHOU M Y, XIA Y H, et al. A stable and high-capacity redox targeting-based electrolyte for aqueous flow batteries[J]. Joule, 2019, 3(9): 2255-2267.
CHEN R Y. Toward high-voltage, energy-dense, and durable aqueous organic redox flow batteries: role of the supporting electrolytes[J]. ChemElectroChem, 2019, 6(3): 603-612.
SUN P, LIU Y H, LI Y Y, et al. 110th anniversary: Unleashing the full potential of quinones for high performance aqueous organic flow battery[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 3994-3999.
HU B, SEEFELDT C, DEBRULER C, et al. Boosting the energy efficiency and power performance of neutral aqueous organic redox flow batteries[J]. Journal of Materials Chemistry A, 2017, 5(42): 22137-22145.
XIAO Y, HU L, GAO L, et al. Enabling high Anion-selective conductivity in membrane for high-performance neutral organic based aqueous redox flow battery by microstructure design[J]. Chemical Engineering Journal, 2022, 432: doi:10.1016/j.cej. 2021.134268.
KWABI D G, JI Y L, AZIZ M J. Electrolyte lifetime in aqueous organic redox flow batteries: A critical review[J]. Chemical Reviews, 2020, 120(14): 6467-6489.
JI Y L, GOULET M A, POLLACK D A, et al. A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate[J]. Advanced Energy Materials, 2019, 9(12): doi: 10.1002/aenm.201900039.
GOULET M A, TONG L C, POLLACK D A, et al. Extending the lifetime of organic flow batteries via redox state management[J]. Journal of the American Chemical Society, 2019, 141(20): 8014-8019.
HU B, HU M W, LUO J, et al. A stable, low permeable TEMPO catholyte for aqueous total organic redox flow batteries[J]. Advanced Energy Materials, 2021: doi: 10.1002/aenm.202102577.
LUO J, HU B, HU M W, et al. Status and prospects of organic redox flow batteries toward sustainable energy storage[J]. ACS Energy Letters, 2019, 4(9): 2220-2240.
TAN R, WANG A, MALPASS-EVANS R, et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage[J]. Nature Materials, 2020, 19(2): 195-202.
... [14](a) Schematic of K4[Fe(CN)6]/DHAQ cell; (b) Energy efficiency of K4[Fe(CN)6]/DHAQ cells assembled with Nafion 117, membranes from SPX-HFP-0.63, SPX-BP-0.61, as functions of current density; (c) Long-term galvanostatic cycling of a K4[Fe(CN)6]/DHAQ cell assembled with SPX-BP-0.95 at 60 mA/cm2[14]Fig. 12
... [23];(b) AQDS和DHAQDS的循环伏安图[23];(c) AQDSNH4 和AQS(NH4)2 的合成路线[27];(d) AQSNa、AQSNH4 、AQDSNa2 、AQDS(NH4)2 溶解度对比[27](a) Schematic of AQDS/HBr cell[23]; (b) Cyclic voltammogram of AQDS and DHAQDS[23]; (c) Synthesis of AQDSNH4 and AQS(NH4)2[27]; (d) A comparison of the solubility of AQSNa, AQSNH4, AQDSNa2, and AQDS(NH4)2[27]Fig. 5
... [23];(c) AQDSNH4 和AQS(NH4)2 的合成路线[27];(d) AQSNa、AQSNH4 、AQDSNa2 、AQDS(NH4)2 溶解度对比[27](a) Schematic of AQDS/HBr cell[23]; (b) Cyclic voltammogram of AQDS and DHAQDS[23]; (c) Synthesis of AQDSNH4 and AQS(NH4)2[27]; (d) A comparison of the solubility of AQSNa, AQSNH4, AQDSNa2, and AQDS(NH4)2[27]Fig. 5
... [23]; (b) Cyclic voltammogram of AQDS and DHAQDS[23]; (c) Synthesis of AQDSNH4 and AQS(NH4)2[27]; (d) A comparison of the solubility of AQSNa, AQSNH4, AQDSNa2, and AQDS(NH4)2[27]Fig. 5
... [26];(d)2,6-DPPEAQ/K4Fe(CN)6 电池性能表征[56];(e)DPivOHAQ 和DBAQ的合成路径,及DPivOHAQ/K4Fe(CN)6 电池性能表征[57](a) Proposed decomposition mechanisms for 2,6-DBEAQ[56]; (b) Synthetic route for 2,6-DPPEAQ[56]; (c) Performance of 2,6-DBEAQ/K4Fe(CN)6 cell[26]; (d) Performance of 2,6-DPPEAQ/K4Fe(CN)6 cell[56]; (e) Synthetic route for DPivOHAQ and DBAQ, and Performance of 2,6- DPivOHAQ/K4Fe(CN)6 cell[57]Fig. 15
... [26]; (d) Performance of 2,6-DPPEAQ/K4Fe(CN)6 cell[56]; (e) Synthetic route for DPivOHAQ and DBAQ, and Performance of 2,6- DPivOHAQ/K4Fe(CN)6 cell[57]Fig. 15
... [27];(d) AQSNa、AQSNH4 、AQDSNa2 、AQDS(NH4)2 溶解度对比[27](a) Schematic of AQDS/HBr cell[23]; (b) Cyclic voltammogram of AQDS and DHAQDS[23]; (c) Synthesis of AQDSNH4 and AQS(NH4)2[27]; (d) A comparison of the solubility of AQSNa, AQSNH4, AQDSNa2, and AQDS(NH4)2[27]Fig. 5
... [27](a) Schematic of AQDS/HBr cell[23]; (b) Cyclic voltammogram of AQDS and DHAQDS[23]; (c) Synthesis of AQDSNH4 and AQS(NH4)2[27]; (d) A comparison of the solubility of AQSNa, AQSNH4, AQDSNa2, and AQDS(NH4)2[27]Fig. 5
... [32](a) The schematic of the full cell (1.51 V) and the corresponding half-cell reactions; (b) cycling performance at 60 mA/cm2; (c) corresponding efficiencies (CE: coulombic efficiency, VE: voltage efficiency, EE: energy efficiency) at different current densities[32]Fig. 13
... [42]Discharge capacity and Coulombic efficiency (CE) and are plotted as functions of time and cycle number with (a) carbon paper or (b) carbon cloth as electrode[42]Fig. 19
... [43];(b) 咪唑基团与氮氧自由基的分子间相互作用力示意图[43];(c) 氧化还原液流电池中向湿性增溶策略[45](a) Photograph of a solution containing 4.3 mol/L 4-OH-TEMPO in 3 mol/kg BMImCl/H2O at room temperature[43]; (b) Schematic illustration of the interactions between the imidazolium group and the organic solute[43]; (c) Hydrotropic solubilization for hybrid ion redox flow batteries[45]Fig. 6
... [43];(c) 氧化还原液流电池中向湿性增溶策略[45](a) Photograph of a solution containing 4.3 mol/L 4-OH-TEMPO in 3 mol/kg BMImCl/H2O at room temperature[43]; (b) Schematic illustration of the interactions between the imidazolium group and the organic solute[43]; (c) Hydrotropic solubilization for hybrid ion redox flow batteries[45]Fig. 6
... [43]; (b) Schematic illustration of the interactions between the imidazolium group and the organic solute[43]; (c) Hydrotropic solubilization for hybrid ion redox flow batteries[45]Fig. 6
... [45](a) Photograph of a solution containing 4.3 mol/L 4-OH-TEMPO in 3 mol/kg BMImCl/H2O at room temperature[43]; (b) Schematic illustration of the interactions between the imidazolium group and the organic solute[43]; (c) Hydrotropic solubilization for hybrid ion redox flow batteries[45]Fig. 6
... [52]Cyclic voltammograms of (a) DMBQ and (b) DMOBQ on glassy carbon electrode; (c) DMBQ on glassy carbon electrode coated with N/S-CMRs, respectively[52]Fig. 7
... Redox potential E1/2, oxidation-reduction peak separation ΔE, and redox kinetics of DMBQ and DMOBQ on varied electrodes[52] ...
... [52]Schematic of cells, polarization curves of the assembled cells, and experimental and fitted electrochemical impedance spectroscopy (EIS) of the assembled cells[52]Fig. 8
... [53];(b) 20~200 mA/cm2 电流密度下4-OH-TEMPO/MV电池搭配不同阴离子交换膜(QPFPAE-x 、DSV)的能量效率测试结果[54](a) Energy efficiency vs. the cycle number from 40 to 100 mA/cm2 of the FcNCl/MV AORFBs with different membranes using 2.0 mol/L NaCl supporting electrolyte[53]; (b) Energy efficiency of the 4-OH-TEMPO/MV batteries with QPFPAE-x and DSV membranes from 20 to 200 mA/cm2[54]Fig. 11
... [54](a) Energy efficiency vs. the cycle number from 40 to 100 mA/cm2 of the FcNCl/MV AORFBs with different membranes using 2.0 mol/L NaCl supporting electrolyte[53]; (b) Energy efficiency of the 4-OH-TEMPO/MV batteries with QPFPAE-x and DSV membranes from 20 to 200 mA/cm2[54]Fig. 11
(a) Proposed decomposition mechanisms for 2,6-DBEAQ[56]; (b) Synthetic route for 2,6-DPPEAQ[56]; (c) Performance of 2,6-DBEAQ/K4Fe(CN)6 cell[26]; (d) Performance of 2,6-DPPEAQ/K4Fe(CN)6 cell[56]; (e) Synthetic route for DPivOHAQ and DBAQ, and Performance of 2,6- DPivOHAQ/K4Fe(CN)6 cell[57]Fig. 15
(a) Proposed decomposition mechanisms for 2,6-DBEAQ[56]; (b) Synthetic route for 2,6-DPPEAQ[56]; (c) Performance of 2,6-DBEAQ/K4Fe(CN)6 cell[26]; (d) Performance of 2,6-DPPEAQ/K4Fe(CN)6 cell[56]; (e) Synthetic route for DPivOHAQ and DBAQ, and Performance of 2,6- DPivOHAQ/K4Fe(CN)6 cell[57]Fig. 15
... [56];(b)2,6-DPPEAQ的合成路径[56];(c)2,6-DBEAQ/K4Fe(CN)6 电池性能表征[26];(d)2,6-DPPEAQ/K4Fe(CN)6 电池性能表征[56];(e)DPivOHAQ 和DBAQ的合成路径,及DPivOHAQ/K4Fe(CN)6 电池性能表征[57](a) Proposed decomposition mechanisms for 2,6-DBEAQ[56]; (b) Synthetic route for 2,6-DPPEAQ[56]; (c) Performance of 2,6-DBEAQ/K4Fe(CN)6 cell[26]; (d) Performance of 2,6-DPPEAQ/K4Fe(CN)6 cell[56]; (e) Synthetic route for DPivOHAQ and DBAQ, and Performance of 2,6- DPivOHAQ/K4Fe(CN)6 cell[57]Fig. 15
... [56];(c)2,6-DBEAQ/K4Fe(CN)6 电池性能表征[26];(d)2,6-DPPEAQ/K4Fe(CN)6 电池性能表征[56];(e)DPivOHAQ 和DBAQ的合成路径,及DPivOHAQ/K4Fe(CN)6 电池性能表征[57](a) Proposed decomposition mechanisms for 2,6-DBEAQ[56]; (b) Synthetic route for 2,6-DPPEAQ[56]; (c) Performance of 2,6-DBEAQ/K4Fe(CN)6 cell[26]; (d) Performance of 2,6-DPPEAQ/K4Fe(CN)6 cell[56]; (e) Synthetic route for DPivOHAQ and DBAQ, and Performance of 2,6- DPivOHAQ/K4Fe(CN)6 cell[57]Fig. 15
... [56];(e)DPivOHAQ 和DBAQ的合成路径,及DPivOHAQ/K4Fe(CN)6 电池性能表征[57](a) Proposed decomposition mechanisms for 2,6-DBEAQ[56]; (b) Synthetic route for 2,6-DPPEAQ[56]; (c) Performance of 2,6-DBEAQ/K4Fe(CN)6 cell[26]; (d) Performance of 2,6-DPPEAQ/K4Fe(CN)6 cell[56]; (e) Synthetic route for DPivOHAQ and DBAQ, and Performance of 2,6- DPivOHAQ/K4Fe(CN)6 cell[57]Fig. 15
... [56]; (b) Synthetic route for 2,6-DPPEAQ[56]; (c) Performance of 2,6-DBEAQ/K4Fe(CN)6 cell[26]; (d) Performance of 2,6-DPPEAQ/K4Fe(CN)6 cell[56]; (e) Synthetic route for DPivOHAQ and DBAQ, and Performance of 2,6- DPivOHAQ/K4Fe(CN)6 cell[57]Fig. 15
... [56]; (c) Performance of 2,6-DBEAQ/K4Fe(CN)6 cell[26]; (d) Performance of 2,6-DPPEAQ/K4Fe(CN)6 cell[56]; (e) Synthetic route for DPivOHAQ and DBAQ, and Performance of 2,6- DPivOHAQ/K4Fe(CN)6 cell[57]Fig. 15
... [57](a) Proposed decomposition mechanisms for 2,6-DBEAQ[56]; (b) Synthetic route for 2,6-DPPEAQ[56]; (c) Performance of 2,6-DBEAQ/K4Fe(CN)6 cell[26]; (d) Performance of 2,6-DPPEAQ/K4Fe(CN)6 cell[56]; (e) Synthetic route for DPivOHAQ and DBAQ, and Performance of 2,6- DPivOHAQ/K4Fe(CN)6 cell[57]Fig. 15
... [61](a) Working principle of hydrophilic microporous membranes for fast ion transport and high ionic and molecular selectivity; Cycling stability of (b) FMN-Na/K4Fe(CN)6 and (c) 2,6-DHAQ/K4Fe(CN)6 batteries with various membranes[61]Fig. 18