Iron-Chromium flow battery (ICFB) was the earliest flow battery. Because of the great advantages of low cost and wide temperature range, ICFB was considered to be one of the most promising technologies for large-scale energy storage, which will effectively solve the problems of connecting renewable energy to the grid, and help achieve carbon peak and carbon neutrality. Firstly, the main advantages of ICFB for large-scale energy storage are discussed, and the development and application of ICFB at home and abroad are introduced as well. Then, the technical bottlenecks of ICFB in the application of energy Storage were summarized and analyzed, including low energy efficiency due to poor electrochemical activity of chromium ion in the electrolyte, and poor stability due to the hydrogen evolution of the negative electrode at the end of charge process. Furthermore, the current research progress was described from four aspects, including electrolyte, electrode, membrane, and structure of flow battery. Finally, contrapose the limitation of ICFB, breakthroughs and innovations for the future ICFB are proposed to provide reference and basis for the development of ICFB, including improving key materials, optimizing design structure, and reducing battery cost.
Fig. 7
Process diagram of the SiO2 introduction on the surface of graphite felt[26]
铁铬离子在电极表面发生氧化还原反应,除了需要大量的反应活性位点,还需要外界提供大于反应所需活化能的能量。因此,通过使用催化剂降低反应活化能,可以促进电解液中活性物质氧化还原反应的进行。目前,将催化剂修饰在电极上的方法主要有两种,电化学沉积法和黏结剂涂覆法。采用电化学沉积的方式,可以将金属催化剂修饰在电极表面,例如铅[27]、金[19]、铋[19]等金属,可以催化Cr2+/Cr3+氧化还原反应,提高其反应活性。其中,金属铋由于其价格较低,且催化效果较好,被广泛应用于液流电池中。Cr2+/Cr3+电对的机理如图8所示,Bi对Cr2+/Cr3+电对的催化机理普遍认为是Bi3+先被氧化成Bi,然后与H+形成中间产物BiH x,BiH x 不会分解为H2,而是参与Cr2+/Cr3+的氧化还原反应,从而促进Cr2+/Cr3+的氧化还原反应[25]。Wu等[28]直接将铋的衍生物固态氢化铋(S-BiH)作为催化剂修饰在碳毡电极上,同样提高Cr2+/Cr3+氧化还原反应的可逆性。
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485.
WANG C X, YU B, LIU Y Z, et al. N-alkyl-carboxylate-functionalized anthraquinone for long-cycling aqueous redox flow batteries[J]. Energy Storage Materials, 2021, 36: 417-426.
PAN M G, LU Y, LU S Y, et al. The dual role of bridging phenylene in an extended bipyridine system for high-voltage and stable two-electron storage in redox flow batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44174-44183.
WANG C X, LI X, YU B, et al. Molecular design of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries[J]. ACS Energy Letters, 2020, 5(2): 411-417.
YAN W, WANG C, TIAN J, et al. All-polymer particulate slurry batteries[J]. Nature Communications, 2019, 10: 2513.
LEUNG P, LI X H, PONCE DE LEÓN C, et al. Progress in redox flow batteries, remaining challenges and their applications in energy storage[J]. RSC Advances, 2012, 2(27): 10125.
CODINA G, ALDAZ A. Scale-up studies of an Fe/Cr redox flow battery based on shunt current analysis[J]. Journal of Applied Electrochemistry, 1992, 22(7): 668-674.
XIA L, LONG T, LI W Y, et al. Highly stable vanadium redox-flow battery assisted by redox-mediated catalysis[J]. Small, 2020, 16(38): 2003321.
ZENG Y K, ZHAO T S, AN L, et al. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage[J]. Journal of Power Sources, 2015, 300: 438-443.
YI B L, LIANG B C, ZHANG E J, et al. Iron/chromium redox flow cell system[J]. Journal of Chemical Industry and Engineering (China), 1992, 43(3): 330-336.
YANG L, WANG H, LI X M, et al. Introduction and engineering case analysis of 250 kW/1.5 MW·h ironchromium redox flow batteries energy storage demonstration power station[J]. Energy Storage Science and Technology, 2020, 9(3): 751-756.
XIAO H D, HUANG R, ZHANG H, et al. Redox kinetics of Fe(Ⅱ)-Cr(Ⅲ) hybrid electrolyte on graphite electrode[J]. Chinese Journal of Power Sources, 2019, 43(7): 1179-1181, 1196.
GAHN R F, HAGEDORN N, LING J S. Single cell performance studies on the Fe/Cr Redox Energy Storage System using mixed reactant solutions at elevated temperature[R]. NASA Technical Memorandum, 1983.
WANG S L, XU Z Y, WU X L, et al. Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery[J]. Applied Energy, 2020, 271: 115252.
WANG S L, XU Z Y, WU X L, et al. Excellent stability and electrochemical performance of the electrolyte with indium ion for iron-chromium flow battery[J]. Electrochimica Acta, 2021, 368: 137524.
RUAN W Q, MAO J T, YANG S D, et al. Designing Cr complexes for a neutral Fe-Cr redox flow battery[J]. Chemical Communications (Cambridge, England), 2020, 56(21): 3171-3174.
ZHANG H, TAN Y, LI J Y, et al. Studies on properties of rayon- and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance[J]. Electrochimica Acta, 2017, 248: 603-613.
ZHANG H, CHEN N, SUN C Y, et al. Investigations on physicochemical properties and electrochemical performance of graphite felt and carbon felt for iron-chromium redox flow battery[J]. International Journal of Energy Research, 2020, 44(5): 3839-3853.
CHEN N, ZHANG H, LUO X D, et al. SiO2-decorated graphite felt electrode by silicic acid etching for iron-chromium redox flow battery[J]. Electrochimica Acta, 2020, 336: 135646.
TIRUKKOVALLURI S R, GORTHI R K H. Synthesis, characterization and evaluation of Pb electroplated carbon felts for achieving maximum efficiency of Fe-Cr redox flow cell[J]. Journal of New Materials for Electrochemical Systems, 2013, 16(4): 287-292.
WU C D, SCHERSON D A, CALVO E J, et al. A bismuth-based electrocatalyst for the chromous-chromic couple in acid electrolytes[J]. Journal of the Electrochemical Society, 1986, 133(10): 2109-2112.
AHN Y, MOON J, PARK S E, et al. High-performance bifunctional electrocatalyst for iron-chromium redox flow batteries[J]. Chemical Engineering Journal, 2021, 421: 127855.
SUN C Y, ZHANG H. Investigation of Nafion series membranes on the performance of iron-chromium redox flow battery[J]. International Journal of Energy Research, 2019, 43(14): 8739-8752.
SUN C Y, ZHANG H, LUO X D, et al. A comparative study of Nafion and sulfonated poly (ether ether ketone) membrane performance for iron-chromium redox flow battery[J]. Ionics, 2019, 25(9): 4219-4229.
LIU Q H, GRIM G M, PAPANDREW A B, et al. High performance vanadium redox flow batteries with optimized electrode configuration and membrane selection[J]. Journal of the Electrochemical Society, 2012, 159(8): A1246-A1252.
ZENG Y K, ZHOU X L, AN L, et al. A high-performance flow-field structured iron-chromium redox flow battery[J]. Journal of Power Sources, 2016, 324: 738-744.
ZENG Y K, ZHOU X L, ZENG L, et al. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields[J]. Journal of Power Sources, 2016, 327: 258-264.
ZENG Y K, ZHAO T S, ZHOU X L, et al. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries[J]. Journal of Power Sources, 2017, 352: 77-82.
... [26]Process diagram of the SiO2 introduction on the surface of graphite felt[26]Fig. 7
铁铬离子在电极表面发生氧化还原反应,除了需要大量的反应活性位点,还需要外界提供大于反应所需活化能的能量.因此,通过使用催化剂降低反应活化能,可以促进电解液中活性物质氧化还原反应的进行.目前,将催化剂修饰在电极上的方法主要有两种,电化学沉积法和黏结剂涂覆法.采用电化学沉积的方式,可以将金属催化剂修饰在电极表面,例如铅[27]、金[19]、铋[19]等金属,可以催化Cr2+/Cr3+氧化还原反应,提高其反应活性.其中,金属铋由于其价格较低,且催化效果较好,被广泛应用于液流电池中.Cr2+/Cr3+电对的机理如图8所示,Bi对Cr2+/Cr3+电对的催化机理普遍认为是Bi3+先被氧化成Bi,然后与H+形成中间产物BiH x,BiH x 不会分解为H2,而是参与Cr2+/Cr3+的氧化还原反应,从而促进Cr2+/Cr3+的氧化还原反应[25].Wu等[28]直接将铋的衍生物固态氢化铋(S-BiH)作为催化剂修饰在碳毡电极上,同样提高Cr2+/Cr3+氧化还原反应的可逆性. ...
... [26]Fig. 7
铁铬离子在电极表面发生氧化还原反应,除了需要大量的反应活性位点,还需要外界提供大于反应所需活化能的能量.因此,通过使用催化剂降低反应活化能,可以促进电解液中活性物质氧化还原反应的进行.目前,将催化剂修饰在电极上的方法主要有两种,电化学沉积法和黏结剂涂覆法.采用电化学沉积的方式,可以将金属催化剂修饰在电极表面,例如铅[27]、金[19]、铋[19]等金属,可以催化Cr2+/Cr3+氧化还原反应,提高其反应活性.其中,金属铋由于其价格较低,且催化效果较好,被广泛应用于液流电池中.Cr2+/Cr3+电对的机理如图8所示,Bi对Cr2+/Cr3+电对的催化机理普遍认为是Bi3+先被氧化成Bi,然后与H+形成中间产物BiH x,BiH x 不会分解为H2,而是参与Cr2+/Cr3+的氧化还原反应,从而促进Cr2+/Cr3+的氧化还原反应[25].Wu等[28]直接将铋的衍生物固态氢化铋(S-BiH)作为催化剂修饰在碳毡电极上,同样提高Cr2+/Cr3+氧化还原反应的可逆性. ...
1
... 铁铬离子在电极表面发生氧化还原反应,除了需要大量的反应活性位点,还需要外界提供大于反应所需活化能的能量.因此,通过使用催化剂降低反应活化能,可以促进电解液中活性物质氧化还原反应的进行.目前,将催化剂修饰在电极上的方法主要有两种,电化学沉积法和黏结剂涂覆法.采用电化学沉积的方式,可以将金属催化剂修饰在电极表面,例如铅[27]、金[19]、铋[19]等金属,可以催化Cr2+/Cr3+氧化还原反应,提高其反应活性.其中,金属铋由于其价格较低,且催化效果较好,被广泛应用于液流电池中.Cr2+/Cr3+电对的机理如图8所示,Bi对Cr2+/Cr3+电对的催化机理普遍认为是Bi3+先被氧化成Bi,然后与H+形成中间产物BiH x,BiH x 不会分解为H2,而是参与Cr2+/Cr3+的氧化还原反应,从而促进Cr2+/Cr3+的氧化还原反应[25].Wu等[28]直接将铋的衍生物固态氢化铋(S-BiH)作为催化剂修饰在碳毡电极上,同样提高Cr2+/Cr3+氧化还原反应的可逆性. ...
1
... 铁铬离子在电极表面发生氧化还原反应,除了需要大量的反应活性位点,还需要外界提供大于反应所需活化能的能量.因此,通过使用催化剂降低反应活化能,可以促进电解液中活性物质氧化还原反应的进行.目前,将催化剂修饰在电极上的方法主要有两种,电化学沉积法和黏结剂涂覆法.采用电化学沉积的方式,可以将金属催化剂修饰在电极表面,例如铅[27]、金[19]、铋[19]等金属,可以催化Cr2+/Cr3+氧化还原反应,提高其反应活性.其中,金属铋由于其价格较低,且催化效果较好,被广泛应用于液流电池中.Cr2+/Cr3+电对的机理如图8所示,Bi对Cr2+/Cr3+电对的催化机理普遍认为是Bi3+先被氧化成Bi,然后与H+形成中间产物BiH x,BiH x 不会分解为H2,而是参与Cr2+/Cr3+的氧化还原反应,从而促进Cr2+/Cr3+的氧化还原反应[25].Wu等[28]直接将铋的衍生物固态氢化铋(S-BiH)作为催化剂修饰在碳毡电极上,同样提高Cr2+/Cr3+氧化还原反应的可逆性. ...