1.State Key Laboratory of Strong Electromagnetic Engineering and New Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology
2.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology
3.School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
All-solid-state lithium battery has become one of the most promising candidates to replace the traditional lithium battery utilizing liquid organic electrolytes due to its high safety and high energy density. The solid electrolyte is the crucial component of all-solid-state lithium battery, and sulfide electrolytes are attractive among solid electrolytes due to their high ionic conductivities and good mechanical ductility. Li3PS4 solid electrolyte with high ionic conductivity, wide electrochemical windows and low cost has been attracted significant attention in recent years. However, its poor air/moisture stability and low compatibility towards cathode/anode materials limit its large-scale application in high-performance all-solid-state lithium batteries. In this paper, the structural mechanism and preparation route of Li3PS4 solid electrolyte were reviewed by discussing the recent literature on Li3PS4 solid electrolyte. Then, the strategies applied to enhance the ionic conductivity, improve the chemical/electrochemical stability, and strengthen the mechanical properties of Li3PS4 are summarized, and the applications of Li3PS4 electrolytes in solid-state batteries combined with different kinds of electrode materials are reviewed. Based on the above analysis, this paper also pointed out the shortcomings of the current Li3PS4 solid electrolyte and prospected the research focus and development direction of Li3PS4 and other sulfide electrolytes in the future.
Fig. 2
(a) Schematic illustration of the O-driven transition from 2D to 3D transport behaviour in β-Li3PS4 and the improvement of the interfacial stability against Li by O doping, (b) The variation of room-temperature ionic conductivities and the average crystallite size with the value of x in 75Li2S·(25-x)P2S5-xP2O5, (c) Raman spectra and b the corresponding XRD patterns and (d) of the dried 75Li2S·25P2S5 sample and heat-treated 75Li2S·(25-x)P2S5-xP2O5 (x= 0, 1, 2, 3, 5 mol%) samples, (e) Model for the oxide filler’s effect on the parent Li3PS4(LPS)electrolyte, ‘A’ represents the addition of no oxide filler, ‘B’ represents the space-charge effect, and ‘C’ shows the blocking effect of the oxide filler
图3
(a) 氧气或氮气气氛下Li3PS4 电解质生成H2S量随时间的变化量;(b) 90Li3PS4-10M x O y (M x O y ∶ZnO, Fe2O3 和Bi2O3)混合物以及玻璃态Li3PS4 生成H2S气相色谱图;(c) 90Li3PS4-10ZnO复合电解质的电导率与在空气中暴露时间的关系;(d) 使用90Li3PS4-10ZnO复合电解质的In/LiCoO2 电池的循环性能[57]
Fig. 3
(a) Time dependence of H2S amounts generated from the Li3PS4 glass under O2 or N2 gas flow, (b) H2S gas chro-matograms for the 90Li3PS4-10M x O y (M x O y : ZnO, Fe2O3,and Bi2O3) composites and the Li3PS4 glass, (c) Electrical conductivity of the pelletized 90Li3PS4-10ZnO composite as a function of exposure time to air, (d) Cycle performance of the In/LiCoO2 cell using the 90Li3PS4-10ZnO composite electrolyte[57]
Fig. 4
(a) Initial and second cycle voltage profiles, (b) corresponding Coulombic efficiencies, and (c) cycling performance at a 0.1 C rate and 25 ℃ of SSB cells using bare (gray), Li2CO3-coated (blue), and Li2CO3/LiNbO3-coated NCM622 (red). Error bars in (b) indicate the standard deviation from two independent cells[66]
Fig. 5
(a) Correlation between cell potential (vs. Li+/Li) and reversible specific capacity in all-solid-state cells with a sulfide solid electrolyte reported so far, (b) Charge-discharge curves of an all-solid-state Li-In/S cell at 25 ℃ under the current density of 0.064 mA/cm2 (The embedded diagram shows the cycle performance of Li-In/S solid state battery at 0.64 mA/cm2), (c) Temperature dependency of ionic conductivities of the bulk Li2S, NanoLi2S, and LSS, (d) Cycling performance of LLS cell, NanoLi2S cell at 60 ℃ under the rate of C/10[77,80]
目前常用的商业化正极材料多为含锂过渡金属氧化物,如钴酸锂、锂镍锰钴三元正极材料等。三元正极材料因其较大的放电比容量和高的工作电压成为动力电池正极材料的研究热点,它主要包括LiNi1-x-y Co x Mn y O2(NCM)[94]和LiNi1-x-y Co x Al y O2(NCA)[95]两大类型。高锂离子电导率的硫化物固态电解质与三元正极材料相结合构筑的全固态电池具有较大的能量密度优势。Machida等人[96]基于Li3PS4电解质,分别选取未包覆的和ZrO2包覆的LiNi1/3Co1/3Mn1/3O2作为正极材料进行对比,发现以ZrO2包覆的正极材料构筑的固态电池Li4.4Si|Li3PS4|ZrO2@LiNi1/3Co1/3Mn1/3O2显示出较小的界面阻抗,其初始放电比容量高达120 mAh/g,循环50次后容量保持率高达95%,上述参数均远高于以LiNi1/3Co1/3Mn1/3O2为正极材料的固态电池。Kim等人[97]也选取Li3PS4为电解质,分别以未包覆和Li2CO3/LiNbO3包覆的LiNi0.6Co0.2Mn0.2O2作为正极材料构筑全固态电池,对比发现Li2CO3/LiNbO3缓冲层能有效减小正极活性材料与电解质之间的界面阻抗,进而提升固态电池的电化学性能。包覆后的固态电池在室温下0.1 C倍率下循环100圈后容量保持率由64%提升至91%。此外,研究发现三元正极材料的粒径同样会影响Li3PS4基固态锂电池的性能,作者选取LiNi0.6Co0.2Mn0.2O2(NCM622)为正极活性材料,分别制备大尺寸的NCM622、中等尺寸的NCM622和小尺寸的NCM6222正极材料,与Li3PS4电解质和In负极构筑全固态电池,实验结果显示以小尺寸NCM622正极构筑的全固态电池表现出更大的可逆比容量以及更为优异的循环性能[98]。
OH D Y, NAM Y J, PARK K H, et al. Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids[J]. Advanced Energy Materials, 2019, 9(16): 1802927.
TSUKASAKI H, MORI Y, OTOYAMA M, et al. Crystallization behavior of the Li2S-P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer[J]. Scientific Reports, 2018, 8: 6214.
XU X X, QIU Z J, GUAN Y B, et al. All-solid-state lithium-ion batteries: State-of-the-art development and perspective[J]. Energy Storage Science and Technology, 2013, 2(4): 331-341.
ITO Y, SAKUDA A, OHTOMO T, et al. Li4GeS4-Li3PS4 electrolyte thin films with highly ion-conductive crystals prepared by pulsed laser deposition[J]. Journal of the Ceramic Society of Japan, 2014, 122(1425): 341-345.
HOOD Z D, WANG H, LI Y C, et al. The "filler effect": A study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes[J]. Solid State Ionics, 2015, 283: 75-80.
PENG L F, REN H T, ZHANG J Z, et al. LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures[J]. Energy Storage Materials, 2021, 43: 53-61.
TAKEUCHI T, KOJIMA T, KAGEYAMA H, et al. All-solid-state lithium-sulfur batteries using sulfurized alcohol composite material with improved coulomb efficiency[J]. Energy Technology, 2019, 7(12): 1900509.
REN H T, ZHANG Z Q, ZHANG J Z, et al. Improvement of stability and solid-state battery performances of annealed 70Li2S-30P2S5 electrolytes by additives[J]. Rare Metals, 2022, 41(1): 106-114.
LI J, CHEN H W, SHEN Y B, et al. Covalent interfacial coupling for hybrid solid-state Li ion conductor[J]. Energy Storage Materials, 2019, 23: 277-283.
LIU X Z, DING L, LIU Y Z, et al. Room-temperature ionic conductivity of Ba, Y, Al co-doped Li7La3Zr2O12 solid electrolyte after sintering[J]. Rare Metals, 2021, 40(8): 2301-2306.
PENG L F, YU C, ZHANG Z Q, et al. Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability[J]. Chemical Engineering Journal, 2022, 430: 132896.
JIN Y M, LIU C J, JIA Z G, et al. Building a highly functional Li1.3Al0.3Ti1.7(PO4)3/poly (vinylidene fluoride) composite electrolyte for all-solid-state lithium batteries[J]. Journal of Alloys and Compounds, 2021, 874: 159890.
YANG S P. An enhanced Li3AlH6 anode prepared by a solid-state ion exchange method for use in a solid-state lithium-ion battery[J]. International Journal of Electrochemical Science, 2020: 9487-9498.
ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Advanced Materials, 2018, 30(44): 1803075.
ZHOU L, ASSOUD A, ZHANG Q, et al. New family of argyrodite thioantimonate lithium superionic conductors[J]. J Am Chem Soc, 2019, 141 (48): 19002-19013.
ZHANG Y B, CHEN R J, LIU T, et al. High capacity and superior cyclic performances of all-solid-state lithium batteries enabled by a glass-ceramics solo[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10029-10035.
ATARASHI A, TSUKASAKI H, OTOYAMA M, et al. Ex situ investigation of exothermal behavior and structural changes of the Li3PS4-LiNi1/3Mn1/3Co1/3O2 electrode composites[J]. Solid State Ionics, 2019, 342: 115046.
WU J H, YAO X Y. Recent progress in interfaces of all-solid-state lithium batteries based on sulfide electrolytes[J]. Energy Storage Science and Technology, 2020, 9(2): 501-514.
LU S T, KOSAKA F, SHIOTANI S, et al. Optimization of lithium ion conductivity of Li2S-P2S5 glass ceramics by microstructural control of crystallization kinetics[J]. Solid State Ionics, 2021, 362: 115583.
ITO Y, SAKUDA A, OHTOMO T, et al. Preparation of Li2S-GeS2 solid electrolyte thin films using pulsed laser deposition[J]. Solid State Ionics, 2013, 236: 1-4.
WANG C, LIANG J, ZHAO Y, et al. All-solid-state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design[J]. Energ Environ Sci, 2021, 14 (5): 2577-2619.
WANG Z X, JIANG Y, WU J, et al. Reaction mechanism of Li2S-P2S5 system in acetonitrile based on wet chemical synthesis of Li7P3S11 solid electrolyte[J]. Chemical Engineering Journal, 2020, 393: 124706.
GARCIA-MENDEZ R, MIZUNO F, ZHANG R G, et al. Effect of processing conditions of 75Li2S-25P2S5 solid electrolyte on its DC electrochemical behavior[J]. Electrochimica Acta, 2017, 237: 144-151.
HOMMA K, YONEMURA M, NAGAO M, et al. Crystal structure of high-temperature phase of lithium ionic conductor, Li3PS4[J]. Journal of the Physical Society of Japan, 2010, 79(Suppl.A): 90-93.
HOMMA K, YONEMURA M, KOBAYASHI T, et al. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4[J]. Solid State Ionics, 2011, 182(1): 53-58.
HAYASHI A, HAMA S, MORIMOTO H, et al. Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling[J]. Journal of the American Ceramic Society, 2001, 84(2): 477-479.
TACHEZ M, MALUGANI J P, MERCIER R, et al. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4[J]. Solid State Ionics, 1984, 14(3): 181-185.
KATO A, SUYAMA M, HOTEHAMA C, et al. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4Interfaces modified with Au thin films[J]. Journal of the Electrochemical Society, 2018, 165(9): A1950-A1954.
TATSUMISAGO M, NAGAO M, HAYASHI A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries[J]. Journal of Asian Ceramic Societies, 2013, 1(1): 17-25.
TERAGAWA S, ASO K, TADANAGA K, et al. Preparation of Li2S-P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery[J]. Journal of Power Sources, 2014, 248: 939-942.
TERAGAWA S, ASO K, TADANAGA K, et al. Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2014, 2(14): 5095.
GAMO H, NAGAI A, MATSUDA A, et al. The effect of solvent on reactivity of the Li2S-P2S5 system in liquid-phase synthesis of Li7P3S11 solid electrolyte[J]. Sci Rep-Uk, 2021, 11 (1):21097-21102.
PHUC N H H, TOTANI M, MORIKAWA K, et al. Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium[J]. Solid State Ionics, 2016, 288: 240-243.
LIU Z C, FU W J, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. Journal of the American Chemical Society, 2013, 135(3): 975-978.
PHUC N H H, MUTO H, MATSUDA A. Fast preparation of Li3PS4 solid electrolyte using methyl propionate as synthesis medium[J]. Materials Today: Proceedings, 2019, 16: 216-219.
ARNOLD W, BUCHBERGER D A, LI Y, et al. Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X= Cl, Br, I) superionic conductors[J]. Journal of Power Sources, 2020, 464: 228158.
YUBUCHI S, UEMATSU M, HOTEHAMA C, et al. An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol[J]. Journal of Materials Chemistry A, 2019, 7(2): 558-566.
CHOI Y E, PARK K H, KIM D H, et al. Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries[J]. ChemSusChem, 2017, 10(12): 2605-2611.
ITO A, KIMURA T, SAKUDA A, et al. Liquid-phase synthesis of Li3PS4 solid electrolyte using ethylenediamine[J]. Journal of Sol-Gel Science and Technology, 2022, 101(1): 2-7.
YAMAMOTO K, TAKAHASHI M, OHARA K, et al. Synthesis of sulfide solid electrolytes through the liquid phase: Optimization of the preparation conditions[J]. ACS Omega, 2020, 5(40): 26287-26294.
SUTO K, BONNICK P, NAGAI E, et al. Microwave-aided synthesis of lithium thiophosphate solid electrolyte[J]. Journal of Materials Chemistry A, 2018, 6(43): 21261-21265.
WANG X L, XIAO R J, LI H, et al. Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(31): 21269-21277.
LIU G Z, XIE D J, WANG X L, et al. High air-stability and superior lithium ion conduction of Li3+3xP1-xZnxS4-xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries[J]. Energy Storage Materials, 2019, 17: 266-274.
KIM J, YOON Y, EOM M, et al. Characterization of amorphous and crystalline Li2S-P2S5-P2Se5 solid electrolytes for all-solid-state lithium ion batteries[J]. Solid State Ionics, 2012, 225: 626-630.
LI J Y, LIU W M, ZHANG X F, et al. Heat treatment effects in oxygen-doped β-Li3PS4 solid electrolyte prepared by wet chemistry method[J]. Journal of Solid State Electrochemistry, 2021, 25(4): 1259-1269.
HOOD Z D, WANG H, LI Y C, et al. The "filler effect": A study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes[J]. Solid State Ionics, 2015, 283: 75-80.
OOURA Y, MACHIDA N, NAITO M, et al. Electrochemical properties of the amorphous solid electrolytes in the system Li2S-Al2S3-P2S5[J]. Solid State Ionics, 2012, 225: 350-353.
RANGASAMY E, LIU Z C, GOBET M, et al. An iodide-based Li7P2S8I superionic conductor[J]. Journal of the American Chemical Society, 2015, 137(4): 1384-1387.
KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(7): 742-746.
LIU G Z, XIE D J, WANG X L, et al. High air-stability and superior lithium ion conduction of Li3+3xP1-xZnxS4-xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries[J]. Energy Storage Materials, 2019, 17: 266-274.
XU R C, XIA X H, WANG X L, et al. Tailored Li2S-P2S5glass-ceramic electrolyte by MoS2doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(6): 2829-2834.
XIE D J, CHEN S J, ZHANG Z H, et al. High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries[J]. Journal of Power Sources, 2018, 389: 140-147.
CALPA M, ROSERO-NAVARRO N C, MIURA A, et al. Chemical stability of Li4PS4I solid electrolyte against hydrolysis[J]. Applied Materials Today, 2021, 22: 100918.
OHTOMO T, HAYASHI A, TATSUMISAGO M, et al. Characteristics of the Li2O-Li2S-P2S5 glasses synthesized by the two-step mechanical milling[J]. Journal of Non-Crystalline Solids, 2013, 364: 57-61.
HAYASHI A, MURAMATSU H, OHTOMO T, et al. Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M=Fe, Zn, and Bi) nanoparticles[J]. Journal of Materials Chemistry A, 2013, 1(21): 6320.
KIMURA T, KATO A, HOTEHAMA C, et al. Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes[J]. Solid State Ionics, 2019, 333: 45-49.
TAO Y C, CHEN S J, LIU D, et al. Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells[J]. Journal of the Electrochemical Society, 2015, 163(2): A96-A101.
FAN X L, JI X, HAN F D, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery[J]. Science Advances, 2018, 4(12): eaau9245.
MATSUDA R, HIRAHARA E, PHUC N H H, et al. Preparation of LiNi1/3Mn1/3Co1/3O2/Li3PS4 cathode composite particles using a new liquid-phase process and application to all-solid-state lithium batteries[J]. Journal of the Ceramic Society of Japan, 2018, 126(10): 826-831.
HARUYAMA J, SODEYAMA K, HAN L Y, et al. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chemistry of Materials, 2014, 26(14): 4248-4255.
OHTA N, TAKADA K, ZHANG L, et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Advanced Materials, 2006, 18(17): 2226-2229.
OHTA N, TAKADA K, SAKAGUCHI I, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochemistry Communications, 2007, 9(7): 1486-1490.
SAKUDA A, KITAURA H, HAYASHI A, et al. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O-SiO2 glasses[J]. Electrochemical and Solid-State Letters, 2008, 11(1): A1.
KIM A Y, STRAUSS F, BARTSCH T, et al. Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries[J]. Chemistry of Materials, 2019, 31(23): 9664-9672.
CHEN S J, XIE D J, LIU G Z, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74.
HAYASHI A, SAKUDA A, TATSUMISAGO M. Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries[J]. Frontiers in Energy Research, 2016, 4: 25.
ZHANG B H, LIU Y L, LIU J, et al. "Polymer-in-ceramic" based poly(Ɛ-caprolactone)/ceramic composite electrolyte for all-solid-state batteries[J]. Journal of Energy Chemistry, 2021, 52: 318-325.
ZHANG S N, ZENG Z, ZHAI W, et al. Bifunctional in situ polymerized interface for stable LAGP-based lithium metal batteries[J]. Advanced Materials Interfaces, 2021, 8(10): 2100072.
CHEN S J, WANG J Y, ZHANG Z H, et al. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries[J]. Journal of Power Sources, 2018, 387: 72-80.
KATO A, YAMAMOTO M, SAKUDA A, et al. Mechanical properties of Li2S-P2S5 glasses with lithium halides and application in all-solid-state batteries[J]. ACS Applied Energy Materials, 2018, 1(3): 1002-1007.
YUE J, HUANG Y L, LIU S F, et al. Rational designed mixed-conductive sulfur cathodes for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36066-36071.
XIAO Y, YAMAMOTO K, MATSUI Y, et al. Comparison of sulfur cathode reactions between a concentrated liquid electrolyte system and a solid-state electrolyte system by soft X-ray absorption spectroscopy[J]. ACS Applied Energy Materials, 2021, 4(1): 186-193.
WU D S, ZHOU G M, MAO E Y, et al. A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes[J]. Nano Research, 2020, 13(5): 1383-1388.
YANG H L, ZHANG B W, WANG Y X, et al. Alkali-metal sulfide as cathodes toward safe and high-capacity metal (M=Li, Na, K) sulfur batteries[J]. Advanced Energy Materials, 2020, 10(37): 2001764.
JIN C B, ZHANG W K, ZHUANG Z Z, et al. Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(2): 632-640.
KINOSHITA S, OKUDA K, MACHIDA N, et al. All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials[J]. Solid State Ionics, 2014, 256: 97-102.
MATSUYAMA T, HAYASHI A, HART C J, et al. Amorphous TiS3/S/C composite positive electrodes with high capacity for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 2016, 163(8): A1730-A1735.
YE H L, MA L, ZHOU Y, et al. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50): 13091-13096.
CUI T Y, XIAO Z H, WANG Z B, et al. FeS2/carbon felt as an efficient electro-Fenton cathode for carbamazepine degradation and detoxification: In-depth discussion of reaction contribution and empirical kinetic model[J]. Environmental Pollution, 2021, 282: 117023.
PAN M Y, HAKARI T, SAKUDA A, et al. Electrochemical properties of all-solid-state lithium batteries with amorphous FeSx-based composite positive electrodes prepared via mechanochemistry[J]. Electrochemistry, 2018, 86(4): 175-178.
FENG L W, LIU Y, WU L, et al. Surface modification with oxygen vacancy in LiNi0.5Co0.2Mn0.3O2 for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 881: 160626.
XIE Z C, ZHANG Y Y, MIN X Q, et al. One-step bulk and surface co-modification of LiNi0.8Co0.15Al0.05O2 cathode material towards excellent long-term cyclability[J]. Electrochimica Acta, 2021, 379: 138124.
MACHIDA N, KASHIWAGI J, NAITO M, et al. Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2 as cathode materials[J]. Solid State Ionics, 2012, 225: 354-358.
KIM A Y, STRAUSS F, BARTSCH T, et al. Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries[J]. Chemistry of Materials, 2019, 31(23): 9664-9672.
STRAUSS F, BARTSCH T, DE BIASI L, et al. Impact of cathode material particle size on the capacity of bulk-type all-solid-state batteries[J]. ACS Energy Letters, 2018, 3(4): 992-996.
HAN L J, WEI Q H, CHEN H M, et al. Open-framework germanates derived GeO2/C nanocomposite as a long-life and high-capacity anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 881: 160533.
ZHANG Y C, CHEN M Y, CHEN Z Y, et al. Constructing cycle-stable Si/TiSi2 composites as anode materials for lithium ion batteries through direct utilization of low-purity Si and Ti-bearing blast furnace slag[J]. Journal of Alloys and Compounds, 2021, 876: 160125.
OKUNO R, YAMAMOTO M, TERAUCHI Y, et al. Stable cyclability of porous Si anode applied for sulfide-based all-solid-state batteries[J]. Energy Procedia, 2019, 156: 183-186.
(a) 氧气或氮气气氛下Li3PS4 电解质生成H2S量随时间的变化量;(b) 90Li3PS4-10M x O y (M x O y ∶ZnO, Fe2O3 和Bi2O3)混合物以及玻璃态Li3PS4 生成H2S气相色谱图;(c) 90Li3PS4-10ZnO复合电解质的电导率与在空气中暴露时间的关系;(d) 使用90Li3PS4-10ZnO复合电解质的In/LiCoO2 电池的循环性能[57]
(a) Time dependence of H2S amounts generated from the Li3PS4 glass under O2 or N2 gas flow, (b) H2S gas chro-matograms for the 90Li3PS4-10M x O y (M x O y : ZnO, Fe2O3,and Bi2O3) composites and the Li3PS4 glass, (c) Electrical conductivity of the pelletized 90Li3PS4-10ZnO composite as a function of exposure time to air, (d) Cycle performance of the In/LiCoO2 cell using the 90Li3PS4-10ZnO composite electrolyte[57]Fig. 3
(a) Initial and second cycle voltage profiles, (b) corresponding Coulombic efficiencies, and (c) cycling performance at a 0.1 C rate and 25 ℃ of SSB cells using bare (gray), Li2CO3-coated (blue), and Li2CO3/LiNbO3-coated NCM622 (red). Error bars in (b) indicate the standard deviation from two independent cells[66]Fig. 4
(a) Correlation between cell potential (vs. Li+/Li) and reversible specific capacity in all-solid-state cells with a sulfide solid electrolyte reported so far, (b) Charge-discharge curves of an all-solid-state Li-In/S cell at 25 ℃ under the current density of 0.064 mA/cm2 (The embedded diagram shows the cycle performance of Li-In/S solid state battery at 0.64 mA/cm2), (c) Temperature dependency of ionic conductivities of the bulk Li2S, NanoLi2S, and LSS, (d) Cycling performance of LLS cell, NanoLi2S cell at 60 ℃ under the rate of C/10[77,80]Fig. 54.2 与硫化锂及其类似物结合的全固态锂硫电池
(a) Correlation between cell potential (vs. Li+/Li) and reversible specific capacity in all-solid-state cells with a sulfide solid electrolyte reported so far, (b) Charge-discharge curves of an all-solid-state Li-In/S cell at 25 ℃ under the current density of 0.064 mA/cm2 (The embedded diagram shows the cycle performance of Li-In/S solid state battery at 0.64 mA/cm2), (c) Temperature dependency of ionic conductivities of the bulk Li2S, NanoLi2S, and LSS, (d) Cycling performance of LLS cell, NanoLi2S cell at 60 ℃ under the rate of C/10[77,80]Fig. 54.2 与硫化锂及其类似物结合的全固态锂硫电池
... 目前常用的商业化正极材料多为含锂过渡金属氧化物,如钴酸锂、锂镍锰钴三元正极材料等.三元正极材料因其较大的放电比容量和高的工作电压成为动力电池正极材料的研究热点,它主要包括LiNi1-x-y Co x Mn y O2(NCM)[94]和LiNi1-x-y Co x Al y O2(NCA)[95]两大类型.高锂离子电导率的硫化物固态电解质与三元正极材料相结合构筑的全固态电池具有较大的能量密度优势.Machida等人[96]基于Li3PS4电解质,分别选取未包覆的和ZrO2包覆的LiNi1/3Co1/3Mn1/3O2作为正极材料进行对比,发现以ZrO2包覆的正极材料构筑的固态电池Li4.4Si|Li3PS4|ZrO2@LiNi1/3Co1/3Mn1/3O2显示出较小的界面阻抗,其初始放电比容量高达120 mAh/g,循环50次后容量保持率高达95%,上述参数均远高于以LiNi1/3Co1/3Mn1/3O2为正极材料的固态电池.Kim等人[97]也选取Li3PS4为电解质,分别以未包覆和Li2CO3/LiNbO3包覆的LiNi0.6Co0.2Mn0.2O2作为正极材料构筑全固态电池,对比发现Li2CO3/LiNbO3缓冲层能有效减小正极活性材料与电解质之间的界面阻抗,进而提升固态电池的电化学性能.包覆后的固态电池在室温下0.1 C倍率下循环100圈后容量保持率由64%提升至91%.此外,研究发现三元正极材料的粒径同样会影响Li3PS4基固态锂电池的性能,作者选取LiNi0.6Co0.2Mn0.2O2(NCM622)为正极活性材料,分别制备大尺寸的NCM622、中等尺寸的NCM622和小尺寸的NCM6222正极材料,与Li3PS4电解质和In负极构筑全固态电池,实验结果显示以小尺寸NCM622正极构筑的全固态电池表现出更大的可逆比容量以及更为优异的循环性能[98]. ...
1
... 目前常用的商业化正极材料多为含锂过渡金属氧化物,如钴酸锂、锂镍锰钴三元正极材料等.三元正极材料因其较大的放电比容量和高的工作电压成为动力电池正极材料的研究热点,它主要包括LiNi1-x-y Co x Mn y O2(NCM)[94]和LiNi1-x-y Co x Al y O2(NCA)[95]两大类型.高锂离子电导率的硫化物固态电解质与三元正极材料相结合构筑的全固态电池具有较大的能量密度优势.Machida等人[96]基于Li3PS4电解质,分别选取未包覆的和ZrO2包覆的LiNi1/3Co1/3Mn1/3O2作为正极材料进行对比,发现以ZrO2包覆的正极材料构筑的固态电池Li4.4Si|Li3PS4|ZrO2@LiNi1/3Co1/3Mn1/3O2显示出较小的界面阻抗,其初始放电比容量高达120 mAh/g,循环50次后容量保持率高达95%,上述参数均远高于以LiNi1/3Co1/3Mn1/3O2为正极材料的固态电池.Kim等人[97]也选取Li3PS4为电解质,分别以未包覆和Li2CO3/LiNbO3包覆的LiNi0.6Co0.2Mn0.2O2作为正极材料构筑全固态电池,对比发现Li2CO3/LiNbO3缓冲层能有效减小正极活性材料与电解质之间的界面阻抗,进而提升固态电池的电化学性能.包覆后的固态电池在室温下0.1 C倍率下循环100圈后容量保持率由64%提升至91%.此外,研究发现三元正极材料的粒径同样会影响Li3PS4基固态锂电池的性能,作者选取LiNi0.6Co0.2Mn0.2O2(NCM622)为正极活性材料,分别制备大尺寸的NCM622、中等尺寸的NCM622和小尺寸的NCM6222正极材料,与Li3PS4电解质和In负极构筑全固态电池,实验结果显示以小尺寸NCM622正极构筑的全固态电池表现出更大的可逆比容量以及更为优异的循环性能[98]. ...
1
... 目前常用的商业化正极材料多为含锂过渡金属氧化物,如钴酸锂、锂镍锰钴三元正极材料等.三元正极材料因其较大的放电比容量和高的工作电压成为动力电池正极材料的研究热点,它主要包括LiNi1-x-y Co x Mn y O2(NCM)[94]和LiNi1-x-y Co x Al y O2(NCA)[95]两大类型.高锂离子电导率的硫化物固态电解质与三元正极材料相结合构筑的全固态电池具有较大的能量密度优势.Machida等人[96]基于Li3PS4电解质,分别选取未包覆的和ZrO2包覆的LiNi1/3Co1/3Mn1/3O2作为正极材料进行对比,发现以ZrO2包覆的正极材料构筑的固态电池Li4.4Si|Li3PS4|ZrO2@LiNi1/3Co1/3Mn1/3O2显示出较小的界面阻抗,其初始放电比容量高达120 mAh/g,循环50次后容量保持率高达95%,上述参数均远高于以LiNi1/3Co1/3Mn1/3O2为正极材料的固态电池.Kim等人[97]也选取Li3PS4为电解质,分别以未包覆和Li2CO3/LiNbO3包覆的LiNi0.6Co0.2Mn0.2O2作为正极材料构筑全固态电池,对比发现Li2CO3/LiNbO3缓冲层能有效减小正极活性材料与电解质之间的界面阻抗,进而提升固态电池的电化学性能.包覆后的固态电池在室温下0.1 C倍率下循环100圈后容量保持率由64%提升至91%.此外,研究发现三元正极材料的粒径同样会影响Li3PS4基固态锂电池的性能,作者选取LiNi0.6Co0.2Mn0.2O2(NCM622)为正极活性材料,分别制备大尺寸的NCM622、中等尺寸的NCM622和小尺寸的NCM6222正极材料,与Li3PS4电解质和In负极构筑全固态电池,实验结果显示以小尺寸NCM622正极构筑的全固态电池表现出更大的可逆比容量以及更为优异的循环性能[98]. ...
1
... 目前常用的商业化正极材料多为含锂过渡金属氧化物,如钴酸锂、锂镍锰钴三元正极材料等.三元正极材料因其较大的放电比容量和高的工作电压成为动力电池正极材料的研究热点,它主要包括LiNi1-x-y Co x Mn y O2(NCM)[94]和LiNi1-x-y Co x Al y O2(NCA)[95]两大类型.高锂离子电导率的硫化物固态电解质与三元正极材料相结合构筑的全固态电池具有较大的能量密度优势.Machida等人[96]基于Li3PS4电解质,分别选取未包覆的和ZrO2包覆的LiNi1/3Co1/3Mn1/3O2作为正极材料进行对比,发现以ZrO2包覆的正极材料构筑的固态电池Li4.4Si|Li3PS4|ZrO2@LiNi1/3Co1/3Mn1/3O2显示出较小的界面阻抗,其初始放电比容量高达120 mAh/g,循环50次后容量保持率高达95%,上述参数均远高于以LiNi1/3Co1/3Mn1/3O2为正极材料的固态电池.Kim等人[97]也选取Li3PS4为电解质,分别以未包覆和Li2CO3/LiNbO3包覆的LiNi0.6Co0.2Mn0.2O2作为正极材料构筑全固态电池,对比发现Li2CO3/LiNbO3缓冲层能有效减小正极活性材料与电解质之间的界面阻抗,进而提升固态电池的电化学性能.包覆后的固态电池在室温下0.1 C倍率下循环100圈后容量保持率由64%提升至91%.此外,研究发现三元正极材料的粒径同样会影响Li3PS4基固态锂电池的性能,作者选取LiNi0.6Co0.2Mn0.2O2(NCM622)为正极活性材料,分别制备大尺寸的NCM622、中等尺寸的NCM622和小尺寸的NCM6222正极材料,与Li3PS4电解质和In负极构筑全固态电池,实验结果显示以小尺寸NCM622正极构筑的全固态电池表现出更大的可逆比容量以及更为优异的循环性能[98]. ...
1
... 目前常用的商业化正极材料多为含锂过渡金属氧化物,如钴酸锂、锂镍锰钴三元正极材料等.三元正极材料因其较大的放电比容量和高的工作电压成为动力电池正极材料的研究热点,它主要包括LiNi1-x-y Co x Mn y O2(NCM)[94]和LiNi1-x-y Co x Al y O2(NCA)[95]两大类型.高锂离子电导率的硫化物固态电解质与三元正极材料相结合构筑的全固态电池具有较大的能量密度优势.Machida等人[96]基于Li3PS4电解质,分别选取未包覆的和ZrO2包覆的LiNi1/3Co1/3Mn1/3O2作为正极材料进行对比,发现以ZrO2包覆的正极材料构筑的固态电池Li4.4Si|Li3PS4|ZrO2@LiNi1/3Co1/3Mn1/3O2显示出较小的界面阻抗,其初始放电比容量高达120 mAh/g,循环50次后容量保持率高达95%,上述参数均远高于以LiNi1/3Co1/3Mn1/3O2为正极材料的固态电池.Kim等人[97]也选取Li3PS4为电解质,分别以未包覆和Li2CO3/LiNbO3包覆的LiNi0.6Co0.2Mn0.2O2作为正极材料构筑全固态电池,对比发现Li2CO3/LiNbO3缓冲层能有效减小正极活性材料与电解质之间的界面阻抗,进而提升固态电池的电化学性能.包覆后的固态电池在室温下0.1 C倍率下循环100圈后容量保持率由64%提升至91%.此外,研究发现三元正极材料的粒径同样会影响Li3PS4基固态锂电池的性能,作者选取LiNi0.6Co0.2Mn0.2O2(NCM622)为正极活性材料,分别制备大尺寸的NCM622、中等尺寸的NCM622和小尺寸的NCM6222正极材料,与Li3PS4电解质和In负极构筑全固态电池,实验结果显示以小尺寸NCM622正极构筑的全固态电池表现出更大的可逆比容量以及更为优异的循环性能[98]. ...