The consumption, conversion, and utilization of energy are accompanied by human society's various production and life activities. With the continuous development of society, the worldwide energy crisis and environmental pollution are causing higher requirements for the efficient and rational application of energy and storage technology. Heat energy is the most common and vital form of energy. Upon deeply analyzing the primary sources, utilization and storage methods and characteristics of heat energy are essential to promote the rational and efficient use of heat energy and contribute to the sustainable development of contemporary society. This paper summarizes the current storage and technologies of heat energy from three aspects: the source form and operation status of heat energy, storage technology of heat energy, and main conversion path and heat energy technology. The ultimate goal is to explore new; green; and sustainable thermal energy resources, combine the characteristics of various thermal energy, and adopt various energy conversion and storage technologies to realize the efficient and green deployment of energy. At the same time, the development of new thermal energy storage materials and technologies, such as thermochemical heat storage, combined with new and efficient thermal energy conversion technology, causes the application of thermal energy to develop in a more scientific and reasonable direction.
Keywords:thermal conversion
;
thermal energy storage
;
thermal energy utilization
;
thermoelectric conversion
Fig. 3
(a) working principle of thermoelectric materials. (b) Recently reported high performance thermoelectric materials and their thermal conversion efficiency
HERRMANN U, KEARNEY D W. Survey of thermal energy storage for parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2002, 124(2): 145-152.
DUNN R I, HEARPS P J, WRIGHT M N. Molten-salt power towers: Newly commercial concentrating solar storage[J]. Proceedings of the IEEE, 2012, 100(2): 504-515.
ZUO Y Z, DING J, YANG X X. Current status of thermal energy storage technologies used for concentrating solar power systems[J]. Chemical Industry and Engineering Progress, 2006, 25(9): 995-1000, 1030.
MÜLLER D, KNOLL C, GRAVOGL G, et al. Medium-temperature thermochemical energy storage with transition metal ammoniates-A systematic material comparison[J]. Applied Energy, 2021, 285: doi: 10.1016/j.apenergy.2021.116470.
KHAMLICH I, ZENG K, FLAMANT G, et al. Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market[J]. Renewable and Sustainable Energy Reviews, 2021, 139: doi:10.1016/j.rser. 2020.110583.
WANG S, ASSELINEAU C A, WANG Y, et al. Performance enhancement of cavity receivers with spillage skirts and secondary reflectors in concentrated solar dish and tower systems[J]. Solar Energy, 2020, 208: 708-727.
ZHANG J H, WEI W. Discussion on distribution characteristics and utilization of geothermal resources in China[J]. Natural Resource Economics of China, 2011, 24(8): 23-24, 28, 54.
FORMAN C, MURITALA I K, PARDEMANN R, et al. Estimating the global waste heat potential[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1568-1579.
JOUHARA H, OLABI A G. Editorial: Industrial waste heat recovery[J]. Energy, 2018, 160: 1-2.
HUNG T C, SHAI T Y, WANG S K. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat[J]. Energy, 1997, 22(7): 661-667.
HASNAIN S M. Review on sustainable thermal energy storage technologies, Part I: Heat storage materials and techniques[J]. Energy Conversion and Management, 1998, 39(11): 1127-1138.
BAUER T, PFLEGER N, BREIDENBACH N, et al. Material aspects of Solar Salt for sensible heat storage[J]. Applied Energy, 2013, 111: 1114-1119.
DINCER I, DOST S, LI X G. Performance analyses of sensible heat storage systems for thermal applications[J]. International Journal of Energy Research, 1997, 21(12): 1157-1171.
FERNANDEZ A I, MARTÍNEZ M, SEGARRA M, et al. Selection of materials with potential in sensible thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2010, 94(10): 1723-1729.
LUZZI A, LOVEGROVE K, FILIPPI E, et al. Techno-economic analysis of a 10 m We solar thermal power plant using ammonia-based thermochemical energy storage[J]. Solar Energy, 1999, 66(2): 91-101.
ACEM Z, LOPEZ J, PALOMO DEL BARRIO E. KNO3/NaNO3-Graphite materials for thermal energy storage at high temperature: Part I. Elaboration methods and thermal properties[J]. Applied Thermal Engineering, 2010, 30(13): 1580-1585.
LI G. Sensible heat thermal storage energy and exergy performance evaluations[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 897-923.
WU G, ZENG M, PENG L L, et al. China׳s new energy development: Status, constraints and reforms[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 885-896.
GIL A, MEDRANO M, MARTORELL I, et al. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 31-55.
SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1064-1070.
PACHECO J E, SHOWALTER S K, KOLB W J. Development of a molten-salt thermocline thermal storage system for parabolic trough plants[J]. Journal of Solar Energy Engineering, 2002, 124(2): 153-159.
FARID M M, KHUDHAIR A M, RAZACK S A K, et al. A review on phase change energy storage: Materials and applications[J]. Energy Conversion and Management, 2004, 45(9/10): 1597-1615.
THIRUGNANAM C, KARTHIKEYAN S, KALAIMURUGAN K. Study of phase change materials and its application in solar cooker[J]. Materials Today: Proceedings, 2020, 33: 2890-2896.
ZHOU Y C, WU S Q, MA Y, et al. Recent advances in organic/composite phase change materials for energy storage[J]. ES Energy & Environment, 2020, 9: 28-40.
AGYENIM F, HEWITT N, EAMES P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615-628.
ORÓ E, DE GRACIA A, CASTELL A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533.
ZHANG S, NIU J L. Experimental investigation of effects of supercooling on microencapsulated phase-change material (MPCM) slurry thermal storage capacities[J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 1038-1048.
LI M, WU Z S, KAO H T, et al. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material[J]. Energy Conversion and Management, 2011, 52(11): 3275-3281.
DAI Y Z, TANG B, LI X F, et al. Research progress in phase change heat storage materials[J]. Chemistry, 2019, 82(8): 717-724, 730.
WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials, 2020, 25: 251-295.
ZHANG S, FENG D L, SHI L, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: doi: 10.1016/j.rser.2020.110127.
CARABALLO A, GALÁN-CASADO S, CABALLERO Á, et al. Molten salts for sensible thermal energy storage: A review and an energy performance analysis[J]. Energies, 2021, 14(4): 1197.
MANTHA D, WANG T, REDDY R G. Thermodynamic modeling of eutectic point in the LiNO3-NaNO3-KNO3 ternary system[J]. Journal of Phase Equilibria and Diffusion, 2012, 33(2): 110-114.
XU F, WANG J T, ZHU X M, et al. Thermodynamic modeling and experimental verification of a NaNO3-KNO3-LiNO3-Ca(NO3)2 system for solar thermal energy storage[J]. New Journal of Chemistry, 2017, 41(18): 10376-10382.
FARAJ K, KHALED M, FARAJ J, et al. Phase change material thermal energy storage systems for cooling applications in buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: doi:10.1016/j.rser.2019.109579.
KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 955-970.
SHI J N, GER M D, LIU Y M, et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon, 2013, 51: 365-372.
GEORGE M, PANDEY A K, ABD RAHIM N, et al. A novel polyaniline (PANI)/paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability[J]. Solar Energy, 2020, 204: 448-458.
LI M, WU Z S, TAN J M. Heat storage properties of the cement mortar incorporated with composite phase change material[J]. Applied Energy, 2013, 103: 393-399.
BARAN G, SARI A. Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system[J]. Energy Conversion and Management, 2003, 44(20): 3227-3246.
WEN R L, ZHANG X G, HUANG Y T, et al. Preparation and properties of fatty acid eutectics/expanded perlite and expanded vermiculite shape-stabilized materials for thermal energy storage in buildings[J]. Energy and Buildings, 2017, 139: 197-204.
DELGADO M, LÁZARO A, MAZO J, et al. Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(1): 253-273.
YAN T, WANG R Z, LI T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 13-31.
AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367.
JITHEESH E V, JOSEPH M, SAJITH V. Comparison of metal oxide and composite phase change material based nanofluids as coolants in mini channel heat sink[J]. International Communications in Heat and Mass Transfer, 2021, 127: doi:10.1016/j.icheatmasstransfer. 2021.105541.
Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage[J]. Sustainability, 2018, 10(1): 191.
PENG X Y, BAJAJ I, YAO M, et al. Solid-gas thermochemical energy storage strategies for concentrating solar power: Optimization and system analysis[J]. Energy Conversion and Management, 2021, 245: doi:10.1016/j.enconman.2021.114636.
CARRILLO A J, GONZÁLEZ-AGUILAR J, ROMERO M, et al. Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials[J]. Chemical Reviews, 2019, 119(7): 4777-4816.
SHARMA A, CHEN C R, MURTY V V S, et al. Solar cooker with latent heat storage systems: A review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6/7): 1599-1605.
TRITT T M, BÖTTNER H, CHEN L D. Thermoelectrics: direct solar thermal energy conversion[J]. MRS Bulletin, 2008, 33(4): 366-368.
BERETTA D, NEOPHYTOU N, HODGES J M, et al. Thermoelectrics: From history, a window to the future[J]. Materials Science and Engineering: Reports, 2019, 138: 100501.
LI S K, CHU M H, ZHU W M, et al. Atomic-scale tuning of oxygen-doped Bi2Te2.7Se0.3 to simultaneously enhance the Seebeck coefficient and electrical conductivity[J]. Nanoscale, 2020, 12(3): 1580-1588.
LI S K, HUANG Z Y, WANG R, et al. Highly distorted grain boundary with an enhanced carrier/phonon segregation effect facilitates high-performance thermoelectric materials[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51018-51027.
LI S K, WANG R, ZHU W M, et al. Achieving high thermoelectric performance by introducing 3D atomically thin conductive framework in porous Bi2Te2.7Se0.3-carbon nanotube hybrids[J]. Advanced Electronic Materials, 2020, 6(8): 2000292.
ZHAO L D, DRAVID V P, KANATZIDIS M G. The panoscopic approach to high performance thermoelectrics[J]. Energy Environ Sci, 2014, 7(1): 251-268.
SHI X L, CHEN W Y, ZHANG T, et al. Fiber-based thermoelectrics for solid, portable, and wearable electronics[J]. Energy & Environmental Science, 2021, 14(2): 729-764.
VINING C B. An inconvenient truth about thermoelectrics[J]. Nature Materials, 2009, 8(2): 83-85.
LIU W S, HU J Z, ZHANG S M, et al. New trends, strategies and opportunities in thermoelectric materials: A perspective[J]. Materials Today Physics, 2017, 1: 50-60.
SHI X, CHEN L. Thermoelectric materials step up[J]. Nature Materials, 2016, 15: 691-692.
LI S K, HUANG Z Y, WANG R, et al. Precision grain boundary engineering in commercial Bi2Te2.7Se0.3 thermoelectric materials towards high performance[J]. Journal of Materials Chemistry A, 2021, 9(18): 11442-11449.
LI S K, CHU M H, ZHU W M, et al. Atomic-scale tuning of oxygen-doped Bi2Te2.7Se0.3 to simultaneously enhance the Seebeck coefficient and electrical conductivity[J]. Nanoscale, 2020, 12(3): 1580-1588.
LI S K, LIU Y D, LIU F S, et al. Effective atomic interface engineering in Bi2Te2.7Se0.3 thermoelectric material by atomic-layer-deposition approach[J]. Nano Energy, 2018, 49: 257-266.
LI C C, JIANG F X, LIU C C, et al. Present and future thermoelectric materials toward wearable energy harvesting[J]. Applied Materials Today, 2019, 15: 543-557.
(a) working principle of thermoelectric materials. (b) Recently reported high performance thermoelectric materials and their thermal conversion efficiencyFig. 3
(a) working principle of thermoelectric materials. (b) Recently reported high performance thermoelectric materials and their thermal conversion efficiencyFig. 3