This study combines the results of domestic and foreign research on the recycling of used lithium iron phosphate power batteries recently. Furthermore, it provides a detailed review of the latest technology for recycling used lithium iron phosphate power batteries, including pretreatment processes, positive and negative electrode materials, and electrolyte recycling methods. This study also focuses on the recovery process of positive electrode material, including the acid leaching process and bioleaching technology in pyrometallurgy and hydrometallurgy, and direct regeneration technology. It introduces the recycling technology of negative electrodes and the supercritical CO2 recovery process of electrolytes. The recent progress in the recovery and utilization of waste lithium iron phosphate power batteries is systematically summarized, and the existing problems in the recovery and utilization of waste lithium iron phosphate power batteries are analyzed. In the future, we will conduct in-depth research on the recycling process and its principle, develop a clean, environmental-friendly and simple recycling process, and adopt different recycling methods for different types of recycled materials. Thus, the high efficiency and high-quality recovery of all waste lithium iron phosphate power battery components can be realized.
Keywords:waste lithium iron phosphate power battery
;
dismantling and recycling
;
cathode material
;
hydrometallurgy
ZHOU Wei. Research progress on recycling technology of waste lithium iron phosphate power battery[J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864
酸浸工艺几乎可以将所有过渡金属氧化物溶解到溶液中,通常使用强无机酸作为浸出剂,不过在酸浸过程中一般会使用过量的酸来确保浸出效率,因此会造成大量浪费。由于使用强无机酸可能会造成较大的二次污染,例如有毒气体(Cl2、SO x 和NO x )的排放和废弃的酸液,也增加了吸收/净化设备的成本支出,近年也提出了使用有机酸,例如柠檬酸、苹果酸等[17]作为替代。
Xin等[32]利用硫氧化菌(SOB)和铁氧化菌(IOB)从三种典型的废旧锂离子动力电池正极材料LiFePO4、LiMn2O4和LiNi x Co y Mn z O2中浸出金属离子,并对Li+、Ni2+、Co2+、Mn2+的浸出机理进行了详细的研究。结果表明,Li+在硫-SOB体系中的浸出率最高,因其仅受微生物产生的H2SO4浓度的影响,而其他高价离子的浸出则受H2SO4含量和IOB产生的还原性Fe2+共同控制。
ZHANG C L. Promote the large-scale application and development of new energy vehicles and help China achieve carbon neutrality[J]. China Sustainability Tribune, 2021(S2): 28-30.
BRACO E, SAN MARTÍN I, BERRUETA A, et al. Experimental assessment of cycling ageing of lithium-ion second-life batteries from electric vehicles[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101695.
LIU Z W, LIU X L, HAO H, et al. Research on the critical issues for power battery reusing of new energy vehicles in China[J]. Energies, 2020, 13(8): 1932.
SHAHJALAL M, ROY P K, SHAMS T, et al. A review on second-life of Li-ion batteries: Prospects, challenges, and issues[J]. Energy, 2022, 241: doi: 10.1016/j.energy.2021.122881.
CHEN Y Z, LI H L, SONG W J, et al. A review on recycling technology of spent lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2019, 8(2): 237-247.
WEI S P, SUN J, ZHOU T, et al. Research development of metals recovery from spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(6): 1196-1207.
ZHANG X X, LI L, FAN E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 7239-7302.
YU W H, GUO Y, SHANG Z, et al. A review on comprehensive recycling of spent power lithium-ion battery in China[J]. eTransportation, 2022, 11: doi: 10.1016/j.etran.2022.100155.
CHEN J J, YE L Q, TIAN Y, et al. A major breakthrough in the key technology of green recycling and precise separation of waste lithium batteries for new energy vehicles[J]. China Science and Technology Achievements, 2021, 22(5): 53, 66.
NATARAJAN S, BORICHA A B, BAJAJ H C. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries[J]. Waste Management, 2018, 77: 455-465.
HE L P, SUN S Y, SONG X F, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46: 523-528.
CHEN X P, LI S Z, WANG Y, et al. Recycling of LiFePO4 cathode materials from spent lithium-ion batteries through ultrasound-assisted fenton reaction and lithium compensation[J]. Waste Management, 2021, 136: 67-75.
FAN M C, ZHAO Y, KANG Y Q, et al. Room-temperature extraction of individual elements from charged spent LiFePO4 batteries[J]. Rare Metals, 2022, 41(5): 1595-1604.
LIU P W, FEI Z T, ZHANG Y J, et al. Efficient oxidation approach for selective recovery of lithium from cathode materials of spent LiFePO4 batteries[J]. JOM, 2022, 74(5): 1934-1944.
JIN H, ZHANG J L, WANG D D, et al. Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation-water leaching at room temperature[J]. Green Chemistry, 2022, 24(1): 152-162.
KUMAR J, SHEN X, LI B, et al. Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4[J]. Waste Management, 2020, 113: 32-40.
WANG X, WANG X Y, ZHANG R, et al. Hydrothermal preparation and performance of LiFePO4 by using Li3PO4 recovered from spent cathode scraps as Li source[J]. Waste Management, 2018, 78: 208-216.
YANG C, ZHANG J L, JING Q K, et al. Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(9): 1478-1487.
LI H, XING S Z, LIU Y, et al. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8017-8024.
BIAN D C, SUN Y H, LI S, et al. A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers[J]. Electrochimica Acta, 2016, 190: 134-140.
LAN J, HOU H Y, HUANG B X, et al. The positive role of vitamin C in spindle-like LiFePO4/C cathode derived from two wastes[J]. Ionics, 2022, 28(4): 1583-1593.
WANG Z X, LI J C, LI J D, et al. Resource recovery technology of spent lithium iron phosphate cathode material[J]. Energy Storage Science and Technology, 2022, 11(1): 45-52.
QIU X J, ZHANG B C, XU Y L, et al. Enabling the sustainable recycling of LiFePO4 from spent lithium-ion batteries[J]. Green Chemistry, 2022, 24(6): 2506-2515.
ZHANG J L, HU J T, LIU Y B, et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626-5631.
CAI G Q, FUNG K Y, NG K M, et al. Process development for the recycle of spent lithium ion batteries by chemical precipitation[J]. Industrial & Engineering Chemistry Research, 2014, 53(47): 18245-18259.
ZHENG R J, ZHAO L, WANG W H, et al. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method[J]. RSC Advances, 2016, 6(49): 43613-43625.
SHIN E J, KIM S, NOH J K, et al. A green recycling process designed for LiFePO4 cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(21): 11493-11502.
GOLMOHAMMADZADEH R, RASHCHI F, VAHIDI E. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects[J]. Waste Management, 2017, 64: 244-254.
GAO W F, ZHANG X H, ZHENG X H, et al. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: A closed-loop process[J]. Environmental Science & Technology, 2017, 51(3): 1662-1669.
SANTHIYA D, TING Y P. Bioleaching of spent refinery processing catalyst using aspergillus niger with high-yield oxalic acid[J]. Journal of Biotechnology, 2005, 116(2): 171-184.
XIN Y Y, GUO X M, CHEN S, et al. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery[J]. Journal of Cleaner Production, 2016, 116: 249-258.
LI X L, ZHANG J, SONG D W, et al. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J]. Journal of Power Sources, 2017, 345: 78-84.
SONG X, HU T, LIANG C, et al. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method[J]. RSC Advances, 2017, 7(8): 4783-4790.
CHEN J P, LI Q W, SONG J S, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8): 2500-2506.
ZHANG H, WANG L H, CHEN Y Z, et al. Regenerated LiFePO4/C for scrapped lithium iron phosphate powder batteries by pre-oxidation and reduction method[J]. Ionics, 2022, 28(5): 2125-2133.
SONG W, LIU J W, YOU L, et al. Re-synthesis of nano-structured LiFePO4/graphene composite derived from spent lithium-ion battery for booming electric vehicle application[J]. Journal of Power Sources, 2019, 419: 192-202.
MORADI B, BOTTE G G. Recycling of graphite anodes for the next generation of lithium ion batteries[J]. Journal of Applied Electrochemistry, 2016, 46(2): 123-148.
HOU H S, QIU X Q, WEI W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): doi:10.1002/aenm.201602898.
YANG Y, SONG S L, LEI S Y, et al. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery[J]. Waste Management, 2019, 85: 529-537.
YI C X, YANG Y, ZHANG T, et al. A green and facile approach for regeneration of graphite from spent lithium ion battery[J]. Journal of Cleaner Production, 2020, 277: doi:10.1016/j.jclepro.2020.123585.
KAYAKOOL F A, GANGAJA B, NAIR S, et al. Li-based all‑carbon dual-ion batteries using graphite recycled from spent Li-ion batteries[J]. Sustainable Materials and Technologies, 2021, 28: e00262.
CHEN X F, ZHU Y Z, PENG W C, et al. Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: A green and high yield route to high-quality graphene preparation[J]. Journal of Materials Chemistry A, 2017, 5(12): 5880-5885.
ZHANG W X, LIU Z P, XIA J, et al. Preparing graphene from anode graphite of spent lithium-ion batteries[J]. Frontiers of Environmental Science & Engineering, 2017, 11(5): 1-8.
MU D Y, LIU Y L, LI R H, et al. Transcritical CO2 extraction of electrolytes for lithium-ion batteries: Optimization of the recycling process and quality-quantity variation[J]. New Journal of Chemistry, 2017, 41(15): 7177-7185.
LIU Y L, MU D Y, LI R H, et al. Purification and characterization of reclaimed electrolytes from spent lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2017, 121(8): 4181-4187.
... 酸浸工艺几乎可以将所有过渡金属氧化物溶解到溶液中,通常使用强无机酸作为浸出剂,不过在酸浸过程中一般会使用过量的酸来确保浸出效率,因此会造成大量浪费.由于使用强无机酸可能会造成较大的二次污染,例如有毒气体(Cl2、SO x 和NO x )的排放和废弃的酸液,也增加了吸收/净化设备的成本支出,近年也提出了使用有机酸,例如柠檬酸、苹果酸等[17]作为替代. ...
... Xin等[32]利用硫氧化菌(SOB)和铁氧化菌(IOB)从三种典型的废旧锂离子动力电池正极材料LiFePO4、LiMn2O4和LiNi x Co y Mn z O2中浸出金属离子,并对Li+、Ni2+、Co2+、Mn2+的浸出机理进行了详细的研究.结果表明,Li+在硫-SOB体系中的浸出率最高,因其仅受微生物产生的H2SO4浓度的影响,而其他高价离子的浸出则受H2SO4含量和IOB产生的还原性Fe2+共同控制. ...