Energy-storage technology is a critical technology for the construction of energy Internet, which is important for ensuring stable operation of power grids, optimizing energy transmission, absorbing clean energy, and improving power quality. Electrochemical energy-storage technology, which enjoys the advantages of small geographic-location restrictions and short construction period, is one of the mainstream energy-storage technologies. Currently, the most mature electrochemical energy-storage technology is lithium-ion battery. However, the shortage in lithium resources can alone limit the popularization of electric vehicles and large-scale energy-storage applications. Sodium-ion batteries have become the current research focus in energy-storage technology owing to rich sodium resources, low cost, high-energy conversion efficiency, long cycle life, low maintenance costs, and other advantages. This study analyzes the technical feasibility and technical economy of Na-ion battery energy-storage technology and compares it with the current mainstream energy-storage technologies. The advantages of Na-ion battery in the field of large-scale energy storage are analyzed in terms of the cost per kiloWatt-hour. A demonstration of a 1 MW·h Na-ion battery energy-storage system is also briefly introduced. Meanwhile, some views and suggestions on the application of Na-ion battery in energy-storage power stations are provided.
Keywords:Na-ion battery
;
energy-storage system
;
technical feasibility
;
economic analysis
;
cost per kiloWatt-hour
ZHANG Ping. Technology feasibility and economic analysis of Na-ion battery energy storage[J]. Energy Storage Science and Technology, 2022, 11(6): 1892-1901
钠离子电池的结构及工作原理(图2)与锂离子电池相同,钠离子电池的构成主要包括正极、负极、隔膜、电解液和集流体。正负极之间由隔膜隔开以防止短路,电解液浸润正负极以确保离子导通,集流体则起到收集和传输电子的作用。充电时,Na+从正极脱出,经电解液穿过隔膜嵌入负极,使正极处于高电势的贫钠态,负极处于低电势的富钠态。放电过程与之相反,Na+从负极脱出,经由电解液穿过隔膜嵌入正极材料中,使正极恢复到富钠态。为保持电荷的平衡,充放电过程中有相同数量的电子经外电路传递,与Na+一起在正负极间迁移,使正负极分别发生氧化和还原反应。若以Na x MO2为正极材料,硬碳为负极材料,则电极和电池的反应式可分别表示为
PAN H L, HU Y S, CHEN L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338.
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522.
WU E A, KOMPELLA C S, ZHU Z Y, et al. New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: a joint experimental and computational study[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10076-10086.
KIM S W, SEO D H, MA X H, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721.
STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1271.
PONROUCH A, GOÑI A R, PALACÍN M R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte[J]. Electrochemistry Communications, 2013, 27: 85-88.
SUN N, LIU H, XU B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(41): 20560-20566.
LIU P, LI Y M, HU Y S, et al. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(34): 13046-13052.
PAN F R, ZHANG J Y, ZHOU Z W, et al. Cost-benefit and investment risk analysis of user-side battery energy storage system[J]. Zhejiang Electric Power, 2019, 38(5): 43-49.
XU R C, ZHANG J T, LIU M Y, et al. Analysis of life cycle cost of electrochemical energy storage and pumped storage[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(12): 10-18.
FU X, LI F C, YANG P F. Benefits comparison of various energy storage equipment peak regulation based on the whole life cycle[J]. Distribution & Utilization, 2020, 37(7): 88-93, 43.
YANG H J, ZHOU M, ZHANG M Y, et al. Operational mechanism and cost-benefit analysis of pumped storage plant in power market environment[J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(6): 71-80.
CHAI M Z, GAO C W, CHEN T, et al. Research on the economics of energy storage allocation for industrial users in Jiangsu province[J]. Power Demand Side Management, 2021, 23(3): 47-51.
FANG Z, CAO Y L, HU Y S, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158.
MENG X F, PANG X L, CHONG F, et al. Application analysis and prospect of electrochemical energy storage in power grid[J]. Energy Storage Science and Technology, 2019, 8(S1): 38-42.
LI J L, YANG S L, GAO K. Frequency modulation technology for conventional units assisted by large scale energy storage system[J]. Electric Power Construction, 2015, 36(5): 105-110.
SUN G H, WANG X H, CHEN Y Z, et al. Analysis of economic benefits of frequency modulation by energy storage combined generating units[J]. Journal of Power Supply, 2020, 18(4): 151-156.
LI X R, HUANG J Y, CHEN Y Y, et al. Review on large-scale involvement of energy storage in power grid fast frequency regulation[J]. Power System Protection and Control, 2016, 44(7): 145-153.
NING Y T, LI X J, DONG D H, et al. A review of the research methods of smoothing wind/PV power output with energy storage systems[J]. Distribution & Utilization, 2017, 34(4): 2-11.
... 钠离子电池的结构及工作原理(图2)与锂离子电池相同,钠离子电池的构成主要包括正极、负极、隔膜、电解液和集流体.正负极之间由隔膜隔开以防止短路,电解液浸润正负极以确保离子导通,集流体则起到收集和传输电子的作用.充电时,Na+从正极脱出,经电解液穿过隔膜嵌入负极,使正极处于高电势的贫钠态,负极处于低电势的富钠态.放电过程与之相反,Na+从负极脱出,经由电解液穿过隔膜嵌入正极材料中,使正极恢复到富钠态.为保持电荷的平衡,充放电过程中有相同数量的电子经外电路传递,与Na+一起在正负极间迁移,使正负极分别发生氧化和还原反应.若以Na x MO2为正极材料,硬碳为负极材料,则电极和电池的反应式可分别表示为