Lithium sulfur (Li-S) battery is considered one of the most promising secondary batteries because of its ultra-high theoretical energy density and abundant sulfur resources. The sulfur cathode in a typical liquid Li-S battery undergoes a "solid-liquid-solid" conversion reaction, which produces soluble polysulfides throughout the charging and discharging process, causing the shuttle effect and resulting in active material loss and inadequate cycle life. The "solid-solid" conversion reaction of the sulfur cathode has been suggested and investigated to avoid the production of soluble long-chain polysulfides and essentially solve the shuttle problem. Various methodologies and research advances toward establishing a "solid-solid" conversion process in the sulfur cathode are discussed in this study. The sulfur limitation mechanisms in microporous structures, covalent sulfur fixing in organic polymers, inorganic heteroatom doping, and organic polymer skeleton/inorganic hybrid synergy are reviewed. Meanwhile, their optimization and enhancement techniques and future challenges are summarized. Furthermore, the solid-state electrolyte paired with the sulfur-positive electrode of the solid-solid conversion process is discussed, followed by a brief introduction to the common techniques of "quasi-solid" phase conversion. Finally, we propose the development of a high-energy density Li-S battery.
Fig. 3
Schematic diagram of mechanism: (a) “solid-liquid-solid” conversion reaction; (b) “quasi-solid-state” conversion reaction due to the formation of cathode CEI films[33]
2015年,Li等人[57]制备了一系列Se掺杂的S1-x Se x /C (x≤0.1)复合正极材料。研究证明Se元素被均匀掺杂,并在无定形态S0.94Se0.06/C中形成了S—Se键。Se掺杂与多孔碳结构的协同作用使电池在碳酸酯类电解液中具有长期稳定的充放电循环性能,其中S0.94Se0.06/C复合材料在1 A/g、500次循环后的比容量为910 mAh/g,在0.2 A/g、100次循环后比容量为1105 mAh/g,在20 A/g时的良好倍率性能为617 mAh/g。此外,在充放电循环过程中没有检测到中间相,并形成了相对稳定的正极CEI膜,说明S1-x Se x /C复合正极成功实现了固固转化。Zeng等人[58]的工作中也得出了类似的结论,他们将S1-x Se x (x≤0.1)渗透到多孔碳纳米纤维(PCNFs)中制成柔性电极,其中S0.94Se0.06@PCNFs在酯类电解液中5 A/g的高电流密度下,2000次循环后比容量为527 mAh/g,每次的容量衰减率仅有0.026%(图8)。此外,该课题组发现在S0.6Se0.4@CNFs薄膜正极材料中也出现了相同的现象。单一放电平台的实现归因于S0.6Se0.4复合材料与CNFs基体之间形成的C—S键。上述两个工作都指出了在正极上形成CEI层的理论合理性[59]。碲(Te)是另一种重要的硫族元素,通过Te—S键可以实现与硫无限混合。Sun等人[60]将Te x S1-x 分子限制在有序介孔碳CMK-3中,Te x S1-x /CMK-3正极表面会形成CEI膜阻止多硫化物与碳酸酯类溶剂反应。
Fig. 9
Schematic diagram of the sulfur redox mechanism of S-KB-P2S5 composite electrode[62]
一些过渡金属,如Mo、Fe、Ti、Nb,可以与硫结合形成金属硫化物,表现出独特的充放电机制。Ye等人[63]首先提出了“硫当量正极材料”的概念,即指具有与单质硫相对应的2 V的高工作电压,以及与传统硫正极相匹敌的高硫含量(>40%)的材料。用MoS3代替单质硫作为正极材料,可以在碳酸酯类电解液中长期稳定循环,紫外-可见光谱(UV-vis)和X射线吸收光谱(XAS)分析表明,在电池充放电循环过程中,不存在多硫化物中间体,在脱锂化过程中,MoS3的非晶链结构没有受到影响。Li等人[64]引入了Fe元素作为中间连接体与硫原子结合,将循环过程中长链Li2S x 中间体转化为Li y FeS x 中间体(图10)。非晶a-FeS x /C (x=2,4,6)正极的容量随含硫量的增加而增大,在碳酸酯类电解液中0.1 A/g电流密度下500次的稳定循环后比容量达931 mAh/g;并且在未添加LiNO3的醚类电解液中也具有良好的循环性能。
Fig. 10
Schematic diagram of structures of Li y FeS x and amorphous a-FeS x[64]
TiS4也具有类似的反应过程,Sakuda等人[65]报道了TiS4的结构随锂嵌入/脱出而变化,并阐明了一种混合反应机制,在电极反应过程中发生了两种结构变化:S—S二硫键的断裂和形成以及Ti配位的变化,两种变化同时发生,从而产生充放电高容量。Sakuda等人[66]报道了新型a-NbS x (x=3、4、5)正极材料,它结合了单质硫和金属硫化物的优点,可以在酯类电解质中可逆循环。
Fig. 12
the structure of S@PAN/S7Se cathode. (a) Three-dimensional view; (b) simplified two-dimensional cross-sectional view of composite cathode before and after electrochemical cycles[74]
LI W D, SONG B H, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059.
ZHAO Q, ZHENG J X, ARCHER L. Interphases in lithium-sulfur batteries: Toward deployable devices with competitive energy density and stability[J]. ACS Energy Letters, 2018, 3(9): 2104-2113.
MANTHIRAM A, FU Y Z, SU Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134.
FANG R P, ZHAO S Y, SUN Z H, et al. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Advanced Materials, 2017, 29(48): doi: 10.1002/adma.201606823.
PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24): doi: 10.1002/aenm.201700260.
LI Z, ZHANG J T, GUAN B Y, et al. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries[J]. Nature Communications, 2016, 7: 13065.
KE C Z, XIAO B S, LI M, et al. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy[J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236.
WANG J L, YANG J, XIE J Y, et al. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte[J]. Electrochemistry Communications, 2002, 4(6): 499-502.
JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
ZHANG X Y, CHEN K, SUN Z H, et al. Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries[J]. Energy & Environmental Science, 2020, 13(4): 1076-1095.
REN W C, MA W, ZHANG S F, et al. Recent advances in shuttle effect inhibition for lithium sulfur batteries[J]. Energy Storage Materials, 2019, 23: 707-732.
YIM T, PARK M S, YU J S, et al. Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li-S batteries[J]. Electrochimica Acta, 2013, 107: 454-460.
YANG H J, CHEN J H, YANG J, et al. Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2020, 59(19): 7306-7318.
MARKEVICH E, SALITRA G, TALYOSEF Y, et al. Review-on the mechanism of quasi-solid-state lithiation of sulfur encapsulated in microporous carbons: Is the existence of small sulfur molecules necessary?[J]. Journal of the Electrochemical Society, 2016, 164(1): A6244-A6253.
CHEN W J, LI B Q, ZHAO C X, et al. Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes[J]. Angewandte Chemie International Edition, 2020, 59(27): 10732-10745.
WANG J, YANG J, XIE J, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Advanced Materials, 2002, 14(13/14): 963-965.
HOOD Z D, WANG H, LI Y C, et al. The "filler effect": A study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes[J]. Solid State Ionics, 2015, 283: 75-80.
NAGAO M, HAYASHI A, TATSUMISAGO M, et al. Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries[J]. Journal of Power Sources, 2015, 274: 471-476.
YAO X Y, HUANG N, HAN F D, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Advanced Energy Materials, 2017, 7(17): doi: 10.1002/aenm.201602923.
LU J Y, KE C Z, GONG Z L, et al. Application of in situ characterization techniques in all-solid-state lithium batteries[J]. Acta Physica Sinica, 2021, 70(19): 236-262.
PANG Q, KUNDU D P, CUISINIER M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications, 2014, 5: 4759.
ZHANG B, QIN X, LI G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science, 2010, 3(10): 1531.
XIN S, GU L, ZHAO N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513.
LI Z, YUAN L X, YI Z Q, et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J]. Advanced Energy Materials, 2014, 4(7): doi: 10.1002/aenm.201301473.
MARKEVICH E, SALITRA G, ROSENMAN A, et al. The effect of a solid electrolyte interphase on the mechanism of operation of lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(39): 19873-19883.
BORCHARDT L, OSCHATZ M, KASKEL S. Carbon materials for lithium sulfur batteries—ten critical questions[J]. Chemistry - A European Journal, 2016, 22(22): 7324-7351.
HU L, LU Y, LI X N, et al. Optimization of microporous carbon structures for lithium-sulfur battery applications in carbonate-based electrolyte[J]. Small, 2017, 13(11): doi: 10.1002/smll.201603533.
MARKEVICH E, SALITRA G, AURBACH D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries[J]. ACS Energy Letters, 2017, 2(6): 1337-1345.
XU Y H, WEN Y, ZHU Y J, et al. Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries[J]. Advanced Functional Materials, 2015, 25(27): 4312-4320.
WANG L N, LIN Y X, DECARLO S, et al. Compositions and formation mechanisms of solid-electrolyte interphase on microporous carbon/sulfur cathodes[J]. Chemistry of Materials, 2020, 32(9): 3765-3775.
WANG J, YANG J, WAN C, et al. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Advanced Functional Materials, 2003, 13(6): 487-492.
GUO J C, YANG Z C, YU Y C, et al. Lithium-sulfur battery cathode enabled by lithium-nitrile interaction[J]. Journal of the American Chemical Society, 2013, 135(2): 763-767.
FANOUS J, WEGNER M, GRIMMINGER J, et al. Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(22): 5024-5028.
WEI S Y, MA L, HENDRICKSON K E, et al. Metal-sulfur battery cathodes based on PAN-sulfur composites[J]. Journal of the American Chemical Society, 2015, 137(37): 12143-12152.
MUKKABLA R, BUCHMEISER M R. Cathode materials for lithium-sulfur batteries based on sulfur covalently bound to a polymeric backbone[J]. Journal of Materials Chemistry A, 2020, 8(11): 5379-5394.
YANG H J, LI Q Y, GUO C, et al. Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode[J]. Chemical Communications (Cambridge, England), 2018, 54(33): 4132-4135.
YANG H J, NAVEED A, LI Q Y, et al. Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode[J]. Energy Storage Materials, 2018, 15: 299-307.
WANG W X, CAO Z, ELIA G A, et al. Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries[J]. ACS Energy Letters, 2018, 3(12): 2899-2907.
JIN Z Q, LIU Y G, WANG W K, et al. A new insight into the lithium storage mechanism of sulfurized polyacrylonitrile with no soluble intermediates[J]. Energy Storage Materials, 2018, 14: 272-278.
WANG X F, QIAN Y M, WANG L N, et al. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries[J]. Advanced Functional Materials, 2019, 29(39): doi: 10.1002/adfm. 201902929.
DUAN B C, WANG W K, WANG A B, et al. Carbyne polysulfide as a novel cathode material for lithium/sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(42): 13261.
DU H P, ZHANG Z H, HE J J, et al. A delicately designed sulfide graphdiyne compatible cathode for high-performance lithium/magnesium-sulfur batteries[J]. Small, 2017, 13(44): doi: 10.1002/smll.201702277.
LI Z, ZHANG J T, WU H B, et al. An improved Li-SeS2 battery with high energy density and long cycle life[J]. Advanced Energy Materials, 2017, 7(15): doi: 10.1002/aenm.201700281.
XU G L, MA T Y, SUN C J, et al. Insight into the capacity fading mechanism of amorphous Se2S5 confined in micro/mesoporous carbon matrix in ether-based electrolytes[J]. Nano Letters, 2016, 16(4): 2663-2673.
ZHANG J T, HU H, LI Z, et al. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2016, 55(12): 3982-3986.
XU K L, LIU X J, LIANG J W, et al. Manipulating the redox kinetics of Li-S chemistry by tellurium doping for improved Li-S batteries[J]. ACS Energy Letters, 2018, 3(2): 420-427.
LI X N, LIANG J W, ZHANG K L, et al. Amorphous S-rich S1–xSex/C (x≤0.1) composites promise better lithium-sulfur batteries in a carbonate-based electrolyte[J]. Energy & Environmental Science, 2015, 8(11): 3181-3186.
ZENG L C, YAO Y, SHI J N, et al. A flexible S1-xSex@porous carbon nanofibers (x≤0.1) thin film with high performance for Li-S batteries and room-temperature Na-S batteries[J]. Energy Storage Materials, 2016, 5: 50-57.
SUN F G, ZHANG B, TANG H, et al. Heteroatomic TexS1-x molecule/C nanocomposites as stable cathode materials in carbonate-based electrolytes for lithium-chalcogen batteries[J]. Journal of Materials Chemistry A, 2018, 6(21): 10104-10110.
LIN Z, LIU Z C, FU W J, et al. Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries[J]. Angewandte Chemie, 2013, 125(29): 7608-7611.
TANIBATA N, TSUKASAKI H, DEGUCHI M, et al. A novel discharge-charge mechanism of a S-P2S5 composite electrode without electrolytes in all-solid-state Li/S batteries[J]. Journal of Materials Chemistry A, 2017, 5(22): 11224-11228.
YE H L, MA L, ZHOU Y, et al. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50): 13091-13096.
LI X N, LIANG J W, LI W H, et al. Stabilizing sulfur cathode in carbonate and ether electrolytes: excluding long-chain lithium polysulfide formation and switching lithiation/delithiation route[J]. Chemistry of Materials, 2019, 31(6): 2002-2009.
SAKUDA A, OHARA K, FUKUDA K, et al. Amorphous metal polysulfides: Electrode materials with unique insertion/extraction reactions[J]. Journal of the American Chemical Society, 2017, 139(26): 8796-8799.
LUO C, ZHU Y J, WEN Y, et al. Carbonized polyacrylonitrile-stabilized SeSx cathodes for long cycle life and high power density lithium ion batteries[J]. Advanced Functional Materials, 2014, 24(26): 4082-4089.
LI Z, ZHANG J T, LU Y, et al. A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances[J]. Science Advances, 2018, 4(6): eaat1687.
JIANG M, WANG K L, GAO S, et al. Selenium as extra binding site for sulfur species in sulfurized polyacrylonitrile cathodes for high capacity lithium-sulfur batteries[J]. Chem Electro Chem, 2019, 6(5): 1365-1370.
ZHU T C, PANG Y, WANG Y G, et al. S0.87Se0.13/CPAN composites as high capacity and stable cycling performance cathode for lithium sulfur battery[J]. Electrochimica Acta, 2018, 281: 789-795.
ZHANG W, LI S P, WANG L H, et al. Insight into sulfur-rich selenium sulfide/pyrolyzed polyacrylonitrile cathodes for Li-S batteries[J]. Sustainable Energy & Fuels, 2020, 4(7): 3588-3596.
CHEN X, PENG L F, WANG L H, et al. Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping[J]. Nature Communications, 2019, 10: 1021.
LI S P, HAN Z L, HU W, et al. Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism[J]. Nano Energy, 2019, 60: 153-161.
HE B, RAO Z X, CHENG Z X, et al. Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li-S batteries[J]. Advanced Energy Materials, 2021, 11(14): doi: 10.1002/aenm.202003690.
KOBAYASHI T, IMADE Y, SHISHIHARA D, et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte[J]. Journal of Power Sources, 2008, 182(2): 621-625.
ZHANG Q B, GONG Z L, YANG Y. Advance in interface and characterizations of sulfide solid electrolyte materials[J]. Acta Physica Sinica, 2020, 69(22): 228803.
NAGAO M, HAYASHI A, TATSUMISAGO M. Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery[J]. Electrochemistry Communications, 2012, 22: 177-180.
NAGAO M, HAYASHI A, TATSUMISAGO M. Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte[J]. Electrochimica Acta, 2011, 56(17): 6055-6059.
NAGAO M, HAYASHI A, TATSUMISAGO M. Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature[J]. Energy Technology, 2013, 1(2/3): 186-192.
NAGAO M, IMADE Y, NARISAWA H, et al. All-solid-state Li-sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte[J]. Journal of Power Sources, 2013, 222: 237-242.
ZHANG Q, HUANG N, HUANG Z, et al. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life[J]. Journal of Energy Chemistry, 2020, 40: 151-155.
XU R C, XIA X H, WANG X L, et al. Tailored Li2S-P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(6): 2829-2834.
XU R C, XIA X H, LI S H, et al. All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor[J]. Journal of Materials Chemistry A, 2017, 5(13): 6310-6317.
KIM S, OGUCHI H, TOYAMA N, et al. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries[J]. Nature Communications, 2019, 10: 1081.
SHEN C, XIE J X, ZHANG M, et al. A Li-Li2S4 battery with improved discharge capacity and cycle life at low electrolyte/sulfur ratios[J]. Journal of Power Sources, 2019, 414: 412-419.
PANG Q, SHYAMSUNDER A, NARAYANAN B, et al. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries[J]. Nature Energy, 2018, 3(9): 783-791.
WANG H, ADAMS B D, PAN H L, et al. Tailored reaction route by micropore confinement for Li-S batteries operating under lean electrolyte conditions[J]. Advanced Energy Materials, 2018, 8(21): doi: 10.1002/aenm.201800590.
Schematic diagram of mechanism: (a) “solid-liquid-solid” conversion reaction; (b) “quasi-solid-state” conversion reaction due to the formation of cathode CEI films[33]Fig. 3
Li-MC/S电池在初始放电过程和正极CEI膜形成过程中MC/S正极的EDL结构[39]
EDL structure of MC/S cathode in Li-MC/S battery during initial discharge and the formation of CEI films[39]Fig. 4
... 2015年,Li等人[57]制备了一系列Se掺杂的S1-x Se x /C (x≤0.1)复合正极材料.研究证明Se元素被均匀掺杂,并在无定形态S0.94Se0.06/C中形成了S—Se键.Se掺杂与多孔碳结构的协同作用使电池在碳酸酯类电解液中具有长期稳定的充放电循环性能,其中S0.94Se0.06/C复合材料在1 A/g、500次循环后的比容量为910 mAh/g,在0.2 A/g、100次循环后比容量为1105 mAh/g,在20 A/g时的良好倍率性能为617 mAh/g.此外,在充放电循环过程中没有检测到中间相,并形成了相对稳定的正极CEI膜,说明S1-x Se x /C复合正极成功实现了固固转化.Zeng等人[58]的工作中也得出了类似的结论,他们将S1-x Se x (x≤0.1)渗透到多孔碳纳米纤维(PCNFs)中制成柔性电极,其中S0.94Se0.06@PCNFs在酯类电解液中5 A/g的高电流密度下,2000次循环后比容量为527 mAh/g,每次的容量衰减率仅有0.026%(图8).此外,该课题组发现在S0.6Se0.4@CNFs薄膜正极材料中也出现了相同的现象.单一放电平台的实现归因于S0.6Se0.4复合材料与CNFs基体之间形成的C—S键.上述两个工作都指出了在正极上形成CEI层的理论合理性[59].碲(Te)是另一种重要的硫族元素,通过Te—S键可以实现与硫无限混合.Sun等人[60]将Te x S1-x 分子限制在有序介孔碳CMK-3中,Te x S1-x /CMK-3正极表面会形成CEI膜阻止多硫化物与碳酸酯类溶剂反应. ...
3
... 2015年,Li等人[57]制备了一系列Se掺杂的S1-x Se x /C (x≤0.1)复合正极材料.研究证明Se元素被均匀掺杂,并在无定形态S0.94Se0.06/C中形成了S—Se键.Se掺杂与多孔碳结构的协同作用使电池在碳酸酯类电解液中具有长期稳定的充放电循环性能,其中S0.94Se0.06/C复合材料在1 A/g、500次循环后的比容量为910 mAh/g,在0.2 A/g、100次循环后比容量为1105 mAh/g,在20 A/g时的良好倍率性能为617 mAh/g.此外,在充放电循环过程中没有检测到中间相,并形成了相对稳定的正极CEI膜,说明S1-x Se x /C复合正极成功实现了固固转化.Zeng等人[58]的工作中也得出了类似的结论,他们将S1-x Se x (x≤0.1)渗透到多孔碳纳米纤维(PCNFs)中制成柔性电极,其中S0.94Se0.06@PCNFs在酯类电解液中5 A/g的高电流密度下,2000次循环后比容量为527 mAh/g,每次的容量衰减率仅有0.026%(图8).此外,该课题组发现在S0.6Se0.4@CNFs薄膜正极材料中也出现了相同的现象.单一放电平台的实现归因于S0.6Se0.4复合材料与CNFs基体之间形成的C—S键.上述两个工作都指出了在正极上形成CEI层的理论合理性[59].碲(Te)是另一种重要的硫族元素,通过Te—S键可以实现与硫无限混合.Sun等人[60]将Te x S1-x 分子限制在有序介孔碳CMK-3中,Te x S1-x /CMK-3正极表面会形成CEI膜阻止多硫化物与碳酸酯类溶剂反应. ...
... [58]Long-term cycling performance of S0.94Se0.06@PCNFs electrode in Li-S batteries at 5 A/g for 2000 cycles[58]Fig. 8
... 2015年,Li等人[57]制备了一系列Se掺杂的S1-x Se x /C (x≤0.1)复合正极材料.研究证明Se元素被均匀掺杂,并在无定形态S0.94Se0.06/C中形成了S—Se键.Se掺杂与多孔碳结构的协同作用使电池在碳酸酯类电解液中具有长期稳定的充放电循环性能,其中S0.94Se0.06/C复合材料在1 A/g、500次循环后的比容量为910 mAh/g,在0.2 A/g、100次循环后比容量为1105 mAh/g,在20 A/g时的良好倍率性能为617 mAh/g.此外,在充放电循环过程中没有检测到中间相,并形成了相对稳定的正极CEI膜,说明S1-x Se x /C复合正极成功实现了固固转化.Zeng等人[58]的工作中也得出了类似的结论,他们将S1-x Se x (x≤0.1)渗透到多孔碳纳米纤维(PCNFs)中制成柔性电极,其中S0.94Se0.06@PCNFs在酯类电解液中5 A/g的高电流密度下,2000次循环后比容量为527 mAh/g,每次的容量衰减率仅有0.026%(图8).此外,该课题组发现在S0.6Se0.4@CNFs薄膜正极材料中也出现了相同的现象.单一放电平台的实现归因于S0.6Se0.4复合材料与CNFs基体之间形成的C—S键.上述两个工作都指出了在正极上形成CEI层的理论合理性[59].碲(Te)是另一种重要的硫族元素,通过Te—S键可以实现与硫无限混合.Sun等人[60]将Te x S1-x 分子限制在有序介孔碳CMK-3中,Te x S1-x /CMK-3正极表面会形成CEI膜阻止多硫化物与碳酸酯类溶剂反应. ...
1
... 2015年,Li等人[57]制备了一系列Se掺杂的S1-x Se x /C (x≤0.1)复合正极材料.研究证明Se元素被均匀掺杂,并在无定形态S0.94Se0.06/C中形成了S—Se键.Se掺杂与多孔碳结构的协同作用使电池在碳酸酯类电解液中具有长期稳定的充放电循环性能,其中S0.94Se0.06/C复合材料在1 A/g、500次循环后的比容量为910 mAh/g,在0.2 A/g、100次循环后比容量为1105 mAh/g,在20 A/g时的良好倍率性能为617 mAh/g.此外,在充放电循环过程中没有检测到中间相,并形成了相对稳定的正极CEI膜,说明S1-x Se x /C复合正极成功实现了固固转化.Zeng等人[58]的工作中也得出了类似的结论,他们将S1-x Se x (x≤0.1)渗透到多孔碳纳米纤维(PCNFs)中制成柔性电极,其中S0.94Se0.06@PCNFs在酯类电解液中5 A/g的高电流密度下,2000次循环后比容量为527 mAh/g,每次的容量衰减率仅有0.026%(图8).此外,该课题组发现在S0.6Se0.4@CNFs薄膜正极材料中也出现了相同的现象.单一放电平台的实现归因于S0.6Se0.4复合材料与CNFs基体之间形成的C—S键.上述两个工作都指出了在正极上形成CEI层的理论合理性[59].碲(Te)是另一种重要的硫族元素,通过Te—S键可以实现与硫无限混合.Sun等人[60]将Te x S1-x 分子限制在有序介孔碳CMK-3中,Te x S1-x /CMK-3正极表面会形成CEI膜阻止多硫化物与碳酸酯类溶剂反应. ...
1
... 2015年,Li等人[57]制备了一系列Se掺杂的S1-x Se x /C (x≤0.1)复合正极材料.研究证明Se元素被均匀掺杂,并在无定形态S0.94Se0.06/C中形成了S—Se键.Se掺杂与多孔碳结构的协同作用使电池在碳酸酯类电解液中具有长期稳定的充放电循环性能,其中S0.94Se0.06/C复合材料在1 A/g、500次循环后的比容量为910 mAh/g,在0.2 A/g、100次循环后比容量为1105 mAh/g,在20 A/g时的良好倍率性能为617 mAh/g.此外,在充放电循环过程中没有检测到中间相,并形成了相对稳定的正极CEI膜,说明S1-x Se x /C复合正极成功实现了固固转化.Zeng等人[58]的工作中也得出了类似的结论,他们将S1-x Se x (x≤0.1)渗透到多孔碳纳米纤维(PCNFs)中制成柔性电极,其中S0.94Se0.06@PCNFs在酯类电解液中5 A/g的高电流密度下,2000次循环后比容量为527 mAh/g,每次的容量衰减率仅有0.026%(图8).此外,该课题组发现在S0.6Se0.4@CNFs薄膜正极材料中也出现了相同的现象.单一放电平台的实现归因于S0.6Se0.4复合材料与CNFs基体之间形成的C—S键.上述两个工作都指出了在正极上形成CEI层的理论合理性[59].碲(Te)是另一种重要的硫族元素,通过Te—S键可以实现与硫无限混合.Sun等人[60]将Te x S1-x 分子限制在有序介孔碳CMK-3中,Te x S1-x /CMK-3正极表面会形成CEI膜阻止多硫化物与碳酸酯类溶剂反应. ...
... [62]Schematic diagram of the sulfur redox mechanism of S-KB-P2S5 composite electrode[62]Fig. 9
一些过渡金属,如Mo、Fe、Ti、Nb,可以与硫结合形成金属硫化物,表现出独特的充放电机制.Ye等人[63]首先提出了“硫当量正极材料”的概念,即指具有与单质硫相对应的2 V的高工作电压,以及与传统硫正极相匹敌的高硫含量(>40%)的材料.用MoS3代替单质硫作为正极材料,可以在碳酸酯类电解液中长期稳定循环,紫外-可见光谱(UV-vis)和X射线吸收光谱(XAS)分析表明,在电池充放电循环过程中,不存在多硫化物中间体,在脱锂化过程中,MoS3的非晶链结构没有受到影响.Li等人[64]引入了Fe元素作为中间连接体与硫原子结合,将循环过程中长链Li2S x 中间体转化为Li y FeS x 中间体(图10).非晶a-FeS x /C (x=2,4,6)正极的容量随含硫量的增加而增大,在碳酸酯类电解液中0.1 A/g电流密度下500次的稳定循环后比容量达931 mAh/g;并且在未添加LiNO3的醚类电解液中也具有良好的循环性能. ...
... [62]Fig. 9
一些过渡金属,如Mo、Fe、Ti、Nb,可以与硫结合形成金属硫化物,表现出独特的充放电机制.Ye等人[63]首先提出了“硫当量正极材料”的概念,即指具有与单质硫相对应的2 V的高工作电压,以及与传统硫正极相匹敌的高硫含量(>40%)的材料.用MoS3代替单质硫作为正极材料,可以在碳酸酯类电解液中长期稳定循环,紫外-可见光谱(UV-vis)和X射线吸收光谱(XAS)分析表明,在电池充放电循环过程中,不存在多硫化物中间体,在脱锂化过程中,MoS3的非晶链结构没有受到影响.Li等人[64]引入了Fe元素作为中间连接体与硫原子结合,将循环过程中长链Li2S x 中间体转化为Li y FeS x 中间体(图10).非晶a-FeS x /C (x=2,4,6)正极的容量随含硫量的增加而增大,在碳酸酯类电解液中0.1 A/g电流密度下500次的稳定循环后比容量达931 mAh/g;并且在未添加LiNO3的醚类电解液中也具有良好的循环性能. ...
1
... 一些过渡金属,如Mo、Fe、Ti、Nb,可以与硫结合形成金属硫化物,表现出独特的充放电机制.Ye等人[63]首先提出了“硫当量正极材料”的概念,即指具有与单质硫相对应的2 V的高工作电压,以及与传统硫正极相匹敌的高硫含量(>40%)的材料.用MoS3代替单质硫作为正极材料,可以在碳酸酯类电解液中长期稳定循环,紫外-可见光谱(UV-vis)和X射线吸收光谱(XAS)分析表明,在电池充放电循环过程中,不存在多硫化物中间体,在脱锂化过程中,MoS3的非晶链结构没有受到影响.Li等人[64]引入了Fe元素作为中间连接体与硫原子结合,将循环过程中长链Li2S x 中间体转化为Li y FeS x 中间体(图10).非晶a-FeS x /C (x=2,4,6)正极的容量随含硫量的增加而增大,在碳酸酯类电解液中0.1 A/g电流密度下500次的稳定循环后比容量达931 mAh/g;并且在未添加LiNO3的醚类电解液中也具有良好的循环性能. ...
3
... 一些过渡金属,如Mo、Fe、Ti、Nb,可以与硫结合形成金属硫化物,表现出独特的充放电机制.Ye等人[63]首先提出了“硫当量正极材料”的概念,即指具有与单质硫相对应的2 V的高工作电压,以及与传统硫正极相匹敌的高硫含量(>40%)的材料.用MoS3代替单质硫作为正极材料,可以在碳酸酯类电解液中长期稳定循环,紫外-可见光谱(UV-vis)和X射线吸收光谱(XAS)分析表明,在电池充放电循环过程中,不存在多硫化物中间体,在脱锂化过程中,MoS3的非晶链结构没有受到影响.Li等人[64]引入了Fe元素作为中间连接体与硫原子结合,将循环过程中长链Li2S x 中间体转化为Li y FeS x 中间体(图10).非晶a-FeS x /C (x=2,4,6)正极的容量随含硫量的增加而增大,在碳酸酯类电解液中0.1 A/g电流密度下500次的稳定循环后比容量达931 mAh/g;并且在未添加LiNO3的醚类电解液中也具有良好的循环性能. ...
... [64]Schematic diagram of structures of Li y FeS x and amorphous a-FeS x[64]Fig. 10
TiS4也具有类似的反应过程,Sakuda等人[65]报道了TiS4的结构随锂嵌入/脱出而变化,并阐明了一种混合反应机制,在电极反应过程中发生了两种结构变化:S—S二硫键的断裂和形成以及Ti配位的变化,两种变化同时发生,从而产生充放电高容量.Sakuda等人[66]报道了新型a-NbS x (x=3、4、5)正极材料,它结合了单质硫和金属硫化物的优点,可以在酯类电解质中可逆循环. ...
... [64]Fig. 10
TiS4也具有类似的反应过程,Sakuda等人[65]报道了TiS4的结构随锂嵌入/脱出而变化,并阐明了一种混合反应机制,在电极反应过程中发生了两种结构变化:S—S二硫键的断裂和形成以及Ti配位的变化,两种变化同时发生,从而产生充放电高容量.Sakuda等人[66]报道了新型a-NbS x (x=3、4、5)正极材料,它结合了单质硫和金属硫化物的优点,可以在酯类电解质中可逆循环. ...
1
... TiS4也具有类似的反应过程,Sakuda等人[65]报道了TiS4的结构随锂嵌入/脱出而变化,并阐明了一种混合反应机制,在电极反应过程中发生了两种结构变化:S—S二硫键的断裂和形成以及Ti配位的变化,两种变化同时发生,从而产生充放电高容量.Sakuda等人[66]报道了新型a-NbS x (x=3、4、5)正极材料,它结合了单质硫和金属硫化物的优点,可以在酯类电解质中可逆循环. ...
1
... TiS4也具有类似的反应过程,Sakuda等人[65]报道了TiS4的结构随锂嵌入/脱出而变化,并阐明了一种混合反应机制,在电极反应过程中发生了两种结构变化:S—S二硫键的断裂和形成以及Ti配位的变化,两种变化同时发生,从而产生充放电高容量.Sakuda等人[66]报道了新型a-NbS x (x=3、4、5)正极材料,它结合了单质硫和金属硫化物的优点,可以在酯类电解质中可逆循环. ...
1
... 2014年,Wang等[67]设计了硫化硒/碳化聚丙烯腈复合材料作为正极材料,有机聚合物骨架和Se的引入都有助于提高硫正极的导电性.此外,电极表面形成的CEI膜可以阻止可溶性多硫化物与电解液反应.因此,SeS0.7/CPAN正极在1200次循环后比容量达780 mAh/g.由于Se的含量高于S,对比容量的提高有所限制,因此在后续的研究中需要进一步调整S/Se比例.Li等人[68]制备了具有多通道结构的pPAN/SeS2材料,在0.2 A/g电流密度下,比容量为1100 mAh/g,在4.0 A/g电流密度下具有高达2000次的稳定循环寿命.此外该复合材料中活性物质含量高达63%,有效地提高了硫的负载量.尽管其具有优良的长期循环稳定性,但复杂的合成条件限制了其广泛的应用.Jiang等[69]报道了一种一步加热法制备硫化硒/聚丙烯腈复合材料的方法,S和Se的原子比取决于初始投料比、煅烧温度和时间.利用一步加热合成的材料如S0.87Se0.13/CPAN[70]和Se0.38S0.62@pPAN[71]均具有良好的电化学性能,高硫负载量和贫电解质可以进一步提高其电化学性能.Chen等人[72]通过在硫化聚丙烯腈中引入了少量Se合成Se x SPAN复合材料,其合成的Se0.06S@pPAN正极由于少量Se掺杂的催化作用使锂离子能够更加快速地扩散(图11),从而实现可溶性多硫化物到固体Li2S的快速转化,阻止多硫化物中间体在醚类电解液中的溶解. ...
1
... 2014年,Wang等[67]设计了硫化硒/碳化聚丙烯腈复合材料作为正极材料,有机聚合物骨架和Se的引入都有助于提高硫正极的导电性.此外,电极表面形成的CEI膜可以阻止可溶性多硫化物与电解液反应.因此,SeS0.7/CPAN正极在1200次循环后比容量达780 mAh/g.由于Se的含量高于S,对比容量的提高有所限制,因此在后续的研究中需要进一步调整S/Se比例.Li等人[68]制备了具有多通道结构的pPAN/SeS2材料,在0.2 A/g电流密度下,比容量为1100 mAh/g,在4.0 A/g电流密度下具有高达2000次的稳定循环寿命.此外该复合材料中活性物质含量高达63%,有效地提高了硫的负载量.尽管其具有优良的长期循环稳定性,但复杂的合成条件限制了其广泛的应用.Jiang等[69]报道了一种一步加热法制备硫化硒/聚丙烯腈复合材料的方法,S和Se的原子比取决于初始投料比、煅烧温度和时间.利用一步加热合成的材料如S0.87Se0.13/CPAN[70]和Se0.38S0.62@pPAN[71]均具有良好的电化学性能,高硫负载量和贫电解质可以进一步提高其电化学性能.Chen等人[72]通过在硫化聚丙烯腈中引入了少量Se合成Se x SPAN复合材料,其合成的Se0.06S@pPAN正极由于少量Se掺杂的催化作用使锂离子能够更加快速地扩散(图11),从而实现可溶性多硫化物到固体Li2S的快速转化,阻止多硫化物中间体在醚类电解液中的溶解. ...
1
... 2014年,Wang等[67]设计了硫化硒/碳化聚丙烯腈复合材料作为正极材料,有机聚合物骨架和Se的引入都有助于提高硫正极的导电性.此外,电极表面形成的CEI膜可以阻止可溶性多硫化物与电解液反应.因此,SeS0.7/CPAN正极在1200次循环后比容量达780 mAh/g.由于Se的含量高于S,对比容量的提高有所限制,因此在后续的研究中需要进一步调整S/Se比例.Li等人[68]制备了具有多通道结构的pPAN/SeS2材料,在0.2 A/g电流密度下,比容量为1100 mAh/g,在4.0 A/g电流密度下具有高达2000次的稳定循环寿命.此外该复合材料中活性物质含量高达63%,有效地提高了硫的负载量.尽管其具有优良的长期循环稳定性,但复杂的合成条件限制了其广泛的应用.Jiang等[69]报道了一种一步加热法制备硫化硒/聚丙烯腈复合材料的方法,S和Se的原子比取决于初始投料比、煅烧温度和时间.利用一步加热合成的材料如S0.87Se0.13/CPAN[70]和Se0.38S0.62@pPAN[71]均具有良好的电化学性能,高硫负载量和贫电解质可以进一步提高其电化学性能.Chen等人[72]通过在硫化聚丙烯腈中引入了少量Se合成Se x SPAN复合材料,其合成的Se0.06S@pPAN正极由于少量Se掺杂的催化作用使锂离子能够更加快速地扩散(图11),从而实现可溶性多硫化物到固体Li2S的快速转化,阻止多硫化物中间体在醚类电解液中的溶解. ...
1
... 2014年,Wang等[67]设计了硫化硒/碳化聚丙烯腈复合材料作为正极材料,有机聚合物骨架和Se的引入都有助于提高硫正极的导电性.此外,电极表面形成的CEI膜可以阻止可溶性多硫化物与电解液反应.因此,SeS0.7/CPAN正极在1200次循环后比容量达780 mAh/g.由于Se的含量高于S,对比容量的提高有所限制,因此在后续的研究中需要进一步调整S/Se比例.Li等人[68]制备了具有多通道结构的pPAN/SeS2材料,在0.2 A/g电流密度下,比容量为1100 mAh/g,在4.0 A/g电流密度下具有高达2000次的稳定循环寿命.此外该复合材料中活性物质含量高达63%,有效地提高了硫的负载量.尽管其具有优良的长期循环稳定性,但复杂的合成条件限制了其广泛的应用.Jiang等[69]报道了一种一步加热法制备硫化硒/聚丙烯腈复合材料的方法,S和Se的原子比取决于初始投料比、煅烧温度和时间.利用一步加热合成的材料如S0.87Se0.13/CPAN[70]和Se0.38S0.62@pPAN[71]均具有良好的电化学性能,高硫负载量和贫电解质可以进一步提高其电化学性能.Chen等人[72]通过在硫化聚丙烯腈中引入了少量Se合成Se x SPAN复合材料,其合成的Se0.06S@pPAN正极由于少量Se掺杂的催化作用使锂离子能够更加快速地扩散(图11),从而实现可溶性多硫化物到固体Li2S的快速转化,阻止多硫化物中间体在醚类电解液中的溶解. ...
1
... 2014年,Wang等[67]设计了硫化硒/碳化聚丙烯腈复合材料作为正极材料,有机聚合物骨架和Se的引入都有助于提高硫正极的导电性.此外,电极表面形成的CEI膜可以阻止可溶性多硫化物与电解液反应.因此,SeS0.7/CPAN正极在1200次循环后比容量达780 mAh/g.由于Se的含量高于S,对比容量的提高有所限制,因此在后续的研究中需要进一步调整S/Se比例.Li等人[68]制备了具有多通道结构的pPAN/SeS2材料,在0.2 A/g电流密度下,比容量为1100 mAh/g,在4.0 A/g电流密度下具有高达2000次的稳定循环寿命.此外该复合材料中活性物质含量高达63%,有效地提高了硫的负载量.尽管其具有优良的长期循环稳定性,但复杂的合成条件限制了其广泛的应用.Jiang等[69]报道了一种一步加热法制备硫化硒/聚丙烯腈复合材料的方法,S和Se的原子比取决于初始投料比、煅烧温度和时间.利用一步加热合成的材料如S0.87Se0.13/CPAN[70]和Se0.38S0.62@pPAN[71]均具有良好的电化学性能,高硫负载量和贫电解质可以进一步提高其电化学性能.Chen等人[72]通过在硫化聚丙烯腈中引入了少量Se合成Se x SPAN复合材料,其合成的Se0.06S@pPAN正极由于少量Se掺杂的催化作用使锂离子能够更加快速地扩散(图11),从而实现可溶性多硫化物到固体Li2S的快速转化,阻止多硫化物中间体在醚类电解液中的溶解. ...
3
... 2014年,Wang等[67]设计了硫化硒/碳化聚丙烯腈复合材料作为正极材料,有机聚合物骨架和Se的引入都有助于提高硫正极的导电性.此外,电极表面形成的CEI膜可以阻止可溶性多硫化物与电解液反应.因此,SeS0.7/CPAN正极在1200次循环后比容量达780 mAh/g.由于Se的含量高于S,对比容量的提高有所限制,因此在后续的研究中需要进一步调整S/Se比例.Li等人[68]制备了具有多通道结构的pPAN/SeS2材料,在0.2 A/g电流密度下,比容量为1100 mAh/g,在4.0 A/g电流密度下具有高达2000次的稳定循环寿命.此外该复合材料中活性物质含量高达63%,有效地提高了硫的负载量.尽管其具有优良的长期循环稳定性,但复杂的合成条件限制了其广泛的应用.Jiang等[69]报道了一种一步加热法制备硫化硒/聚丙烯腈复合材料的方法,S和Se的原子比取决于初始投料比、煅烧温度和时间.利用一步加热合成的材料如S0.87Se0.13/CPAN[70]和Se0.38S0.62@pPAN[71]均具有良好的电化学性能,高硫负载量和贫电解质可以进一步提高其电化学性能.Chen等人[72]通过在硫化聚丙烯腈中引入了少量Se合成Se x SPAN复合材料,其合成的Se0.06S@pPAN正极由于少量Se掺杂的催化作用使锂离子能够更加快速地扩散(图11),从而实现可溶性多硫化物到固体Li2S的快速转化,阻止多硫化物中间体在醚类电解液中的溶解. ...
... [72]Schematic diagram of selenium doping improves redox conversion and reaction kinetics of polysulfides[72]Fig. 11
... [74]the structure of S@PAN/S7Se cathode. (a) Three-dimensional view; (b) simplified two-dimensional cross-sectional view of composite cathode before and after electrochemical cycles[74]Fig. 12