Energy storage technology is the key to constructing new power systems and achieving "carbon neutrality." Flow batteries are ideal for energy storage due to their high safety, high reliability, long cycle life, and environmental safety. In this review article, we discuss the research progress in flow battery technologies, including traditional (e.g., iron-chromium, vanadium, and zinc-bromine flow batteries) and recent flow battery systems (e.g., bromine-based, quinone-based, phenazine-based, TEMPO-based, and methyl viologen [MV]-based flow batteries). Furthermore, we systematically review these flow batteries according to their development and maturity and discuss their traits, challenges, and prospects. The bottlenecks for different types of flow battery technologies are also selectively analyzed. The future advancement and research directions of flow battery technologies are summarized by considering the practical requirements and development trends in flow battery technologies.
(3)两性锌基液流电池体系:锌电对在不同pH下具有不同电位值[18],如在中性(偏弱酸性)环境下,Zn2+/Zn电对的电位为-0.763 V(vs. SHE);在碱性环境下,Zn(OH)42-/Zn电对的电位为-1.26 V(vs. SHE,pH=14),且Zn(OH)42-/Zn电对在碱性电解液中的电位随OH-浓度而变化。而中性或弱酸性体系下的Br-/Br3-(1.087 V vs. SHE)、I-/I3-(0.536 V vs. SHE)、Fe2+/Fe3+(0.77 V vs. SHE,pH=0)等电对具有较高的正极电位,将具有较高正极电位的电对与碱性Zn(OH)42-/Zn电对可以得到开路电压接近2 V的两性锌基液流电池体系,如两性锌铁液流电池体系(1.99 V)[19]、两性锌碘液流电池体系(1.796 V)[18]等。电池较高的开路电压通常可以赋予其较高的功率特性和能量密度,但由于负极电解液呈碱性,正极电解液呈中性或酸性,电池运行过程中,载流子(OH-、H+等)会通过膜材料,使得电池负极pH逐渐降低,正极pH逐渐升高,正负极电解液pH最终达到平衡,导致电池性能的衰减。
TEMPO(2,2,6,6-四甲基哌啶氧化物)是一类含氮氧自由基的有机物(图5),具有良好的电化学活性和可逆性,电位较高(0.8~1.1 V vs. SHE)。TEMPO在水中溶解度较低,为了解决这一问题,研究者通过分子修饰的方法,在TEMPO引入羟基(4-OH-TEMPO)[64]、磺酸基[34]、三甲基氯化铵(4-TMA-TEMPO)[65]等亲水性基团,大幅提高了TEMPO的溶解度。为防止活性物质的交叉互串,Winsberg等[66]将TEMPO与吩嗪结合,设计合成出可以同时作为正、负极活性物质的有机化合物,将其用在静态电池中,电池电压为1.2 V,库仑效率约98.3%,连续稳定运行超过1800个循环容量几乎保持稳定。由于该电对的反应动力学较差,导致电池能量效率偏低(<50%)。通过小分子聚合也是抑制电解液活性物质交叉互串的一种有效方法。Schubert等[67]设计合成了一种水溶性聚合物,聚合物侧链分别连接TEMPO和联吡啶盐类物质,这种聚合物活性物质具有较大的尺寸,电池因此可以采用成本较低的透析膜,从而大幅降低电池成本。然而,这种聚合物活性物质溶解度有限,理论体积容量只有10 Ah/L,且由于聚合物溶液黏度较高、分子空间位阻较大等问题,使得聚合物活性物质在电池中的利用率偏低(约41%)。
与大部分吩嗪基及醌基电对类似,紫精及其衍生物(基于联吡啶结构,图5)也是一种常见的有机负极氧化还原电对。在众多紫精及其衍生物中,甲基紫精(MV)结构简单[64],在水中溶解度超过3.0 mol/L。作为负极氧化还原电对,MV在电化学反应过程中,MV2+先得到一个电子被还原成自由基阳离子(MV·+,-0.45 V vs. SHE),这一过程可逆性高、反应动力学好,未成对电子在联吡啶结构上发生离域使其在溶液中具有较高的稳定性;MV·+可再次得到电子被还原成MV0 (-0.76 V vs. SHE),这一过程生成的MV0溶解度很低,反应可逆性较差[70]。
LI X F, ZHANG H Z, ZHENG Q, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449.
WANG F, HARINDINTWALI J D, YUAN Z Z, et al. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation, 2021, 2(4): doi: 10.1016/j.xinn.2021.100180.
YUAN Z Z, YIN Y B, XIE C X, et al. Advanced materials for zinc-based flow battery: Development and challenge[J]. Advanced Materials, 2019, 31(50): doi: 10.1002/adma.201902025.
ZHANG H, TAN Y, LI J Y, et al. Studies on properties of rayon- and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance[J]. Electrochimica Acta, 2017, 248: 603-613.
ZHANG H, CHEN N, SUN C Y, et al. Investigations on physicochemical properties and electrochemical performance of graphite felt and carbon felt for iron-chromium redox flow battery[J]. International Journal of Energy Research, 2020, 44(5): 3839-3853.
INOUE M, TSUZUKI Y, IIZUKA Y, et al. Carbon fiber electrode for redox flow battery[J]. Journal of the Electrochemical Society, 1987, 134(3): 756-757.
Rodes A, Feliu J M, Aldaz A, et al. The influence of polyoriented gold electrodes modified by reversibly and irreversibly adsorbed ad-atoms on the redox behaviour of the Cr(Ⅲ)/Cr(Ⅱ) [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 271(1): 127-139.
ZENG Y K, ZHOU X L, AN L, et al. A high-performance flow-field structured iron-chromium redox flow battery[J]. Journal of Power Sources, 2016, 324: 738-744.
Sum E, Skyllas-Kazacos M. A study of the V(Ⅱ)/V(Ⅲ) redox couple for redox flow cell applications [J]. Journal of Power Sources, 1985, 15(2): 179-190.
SKYLLAS-KAZACOS M, RYCHCIK M, ROBINS R G, et al. New all-vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1986, 133(5): 1057-1058.
HUANG K L, LI X G, LIU S Q, et al. Research progress of vanadium redox flow battery for energy storage in China[J]. Renewable Energy, 2008, 33(2): 186-192.
YUAN Z Z, ZHANG H M, LI X F. Ion conducting membranes for aqueous flow battery systems[J]. Chemical Communications (Cambridge, England), 2018, 54(55): 7570-7588.
DAI Q, XING F, LIU X N, et al. High-performance PBI membranes for flow batteries: From the transport mechanism to the pilot plant[J]. Energy & Environmental Science, 2022, 15(4): 1594-1600.
LI T Y, XING F, LIU T, et al. Cost, performance prediction and optimization of a vanadium flow battery by machine-learning[J]. Energy & Environmental Science, 2020, 13(11): 4353-4361.
ZHANG J, JIANG G P, XU P, et al. An all-aqueous redox flow battery with unprecedented energy density[J]. Energy & Environmental Science, 2018, 11(8): 2010-2015.
GONG K, MA X Y, CONFORTI K M, et al. A zinc-iron redox-flow battery under $100 per kWh of system capital cost[J]. Energy & Environmental Science, 2015, 8(10): 2941-2945.
YIN Y B, WANG S N, ZHANG Q, et al. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery[J]. Advanced Materials, 2020, 32(6): doi:10.1002/adma.201906803.
WANG S N, YUAN C G, CHANG N N, et al. Act in contravention: A non-planar coupled electrode design utilizing "tip effect" for ultra-high areal capacity, long cycle life zinc-based batteries[J]. Science Bulletin, 2021, 66(9): 889-896.
WANG S N, WANG Z Y, YIN Y B, et al. A highly reversible zinc deposition for flow batteries regulated by critical concentration induced nucleation[J]. Energy & Environmental Science, 2021, 14(7): 4077-4084.
LI X J, LI T Y, XU P C, et al. A complexing agent to enable a wide-temperature range bromine-based flow battery for stationary energy storage[J]. Advanced Functional Materials, 2021, 31(22): doi: 10.1002/adfm.202100133.
LI X J, XIE C X, LI T Y, et al. Low-cost titanium-bromine flow battery with ultrahigh cycle stability for grid-scale energy storage[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(49): doi: 10.1002/adma.202005036.
LU W J, XU P C, SHAO S Y, et al. Multifunctional carbon felt electrode with N-rich defects enables a long-cycle zinc-bromine flow battery with ultrahigh power density[J]. Advanced Functional Materials, 2021, 31(30): doi: 10.1002/adfm.202102913.
HUA L, LU W, LI T, et al. A highly selective porous composite membrane with bromine capturing ability for a bromine-based flow battery[J]. Materials Today Energy, 2021, 21: doi:10.1016/j.mtener.2021.100763.
HU J, YUE M, ZHANG H M, et al. A boron nitride nanosheets composite membrane for a long-life zinc-based flow battery[J]. Angewandte Chemie (International Ed in English), 2020, 59(17): 6715-6719.
WU J E, YUAN C G, LI T Y, et al. Dendrite-free zinc-based battery with high areal capacity via the region-induced deposition effect of turing membrane[J]. Journal of the American Chemical Society, 2021, 143(33): 13135-13144.
YUAN Z Z, LIU X Q, XU W B, et al. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life[J]. Nature Communications, 2018, 9: 3731.
HU J, ZHANG H M, XU W B, et al. Mechanism and transfer behavior of ions in Nafion membranes under alkaline media[J]. Journal of Membrane Science, 2018, 566: 8-14.
HU J, TANG X M, DAI Q, et al. Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device[J]. Nature Communications, 2021, 12: 3409.
YUAN Z Z, LIANG L X, DAI Q, et al. Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage[J]. Joule, 2022, 6(4): 884-905.
WINSBERG J, STOLZE C, SCHWENKE A, et al. Aqueous 2, 2, 6, 6-tetramethylpiperidine-N-oxyl catholytes for a high-capacity and high current density oxygen-insensitive hybrid-flow battery[J]. ACS Energy Letters, 2017, 2(2): 411-416.
XIE C X, LI T Y, DENG C Z, et al. A highly reversible neutral zinc/manganese battery for stationary energy storage[J]. Energy & Environmental Science, 2020, 13(1): 135-143.
XIE C X, DUAN Y Q, XU W B, et al. A low-cost neutral zinc-iron flow battery with high energy density for stationary energy storage[J]. Angewandte Chemie (International Ed in English), 2017, 56(47): 14953-14957.
XIE C X, LIU Y, LU W J, et al. Highly stable zinc-iodine single flow batteries with super high energy density for stationary energy storage[J]. Energy & Environmental Science, 2019, 12(6): 1834-1839.
WENG G M, LI Z J, CONG G T, et al. Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries[J]. Energy & Environmental Science, 2017, 10(3): 735-741.
LIU Z, CUI T, PULLETIKURTHI G, et al. Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries[J]. Angewandte Chemie (International Ed in English), 2016, 55(8): 2889-2893.
PARKER J F, CHERVIN C N, NELSON E S, et al. Wiring zinc in three dimensions re-writes battery performance-dendrite-free cycling[J]. Energy Environ Sci, 2014, 7(3): 1117-1124.
BANIK S J, AKOLKAR R. Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive[J]. Journal of the Electrochemical Society, 2013, 160(11): D519-D523.
FU J, CANO Z P, PARK M G, et al. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Advanced Materials, 2017, 29(7): doi: 10.1002/adma.201604685.
PARKER J F, CHERVIN C N, PALA I R, et al. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion[J]. Science, 2017, 356(6336): 415-418.
KNEHR K W, BISWAS S, STEINGART D A. Quantification of the voltage losses in the minimal architecture zinc-bromine battery using GITT and EIS[J]. Journal of the Electrochemical Society, 2017, 164(13): A3101-A3108.
KHATAEE A, WEDEGE K, DRAŽEVIĆ E, et al. Differential pH as a method for increasing cell potential in organic aqueous flow batteries[J]. J Mater Chem A, 2017, 5(41): 21875-21882.
YANG Z J, TONG L C, TABOR D P, et al. Alkaline benzoquinone aqueous flow battery for large-scale storage of electrical energy[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201870034.
LIU W Q, ZHAO Z M, LI T Y, et al. A high potential biphenol derivative cathode: Toward a highly stable air-insensitive aqueous organic flow battery[J]. Science Bulletin, 2021, 66(5): 457-463.
WANG C X, YANG Z, WANG Y R, et al. High-performance alkaline organic redox flow batteries based on 2-hydroxy-3-carboxy-1, 4-naphthoquinone[J]. ACS Energy Letters, 2018, 3(10): 2404-2409.
TONG L C, GOULET M A, TABOR D P, et al. Molecular engineering of an alkaline naphthoquinone flow battery[J]. ACS Energy Letters, 2019, 4(8): 1880-1887.
CAO J Y, TAO M, CHEN H P, et al. A highly reversible anthraquinone-based anolyte for alkaline aqueous redox flow batteries[J]. Journal of Power Sources, 2018, 386: 40-46.
LEE W, PARK G, KWON Y. Alkaline aqueous organic redox flow batteries of high energy and power densities using mixed naphthoquinone derivatives[J]. Chemical Engineering Journal, 2020, 386: doi: 10.1016/j.cej.2019.123985.
CHEN D J, DUAN W Q, HE Y Y, et al. Porous membrane with high selectivity for alkaline quinone-based flow batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 48533-48541.
HOLLAS A, WEI X L, MURUGESAN V, et al. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries[J]. Nature Energy, 2018, 3(6): 508-514.
WANG C, LI X, YU B, et al. Molecular disign of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries [J]. ACS Energy Letters, 2020, (2): 411-417.
PANG S, WANG X Y, WANG P, et al. Biomimetic amino acid functionalized phenazine flow batteries with long lifetime at near-neutral pH[J]. Angewandte Chemie (International Ed in English), 2021, 60(10): 5289-5298.
XU J C, PANG S, WANG X Y, et al. Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures[J]. Joule, 2021, 5(9): 2437-2449.
ZHANG C K, NIU Z H, PENG S S, et al. Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries[J]. Advanced Materials, 2019, 31(24): doi: 10.1002/adma.201901052.
LIU T B, WEI X L, NIE Z M, et al. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte[J]. Advanced Energy Materials, 2016, 6(3): doi: 10.1002/aenm.201501449.
JANOSCHKA T, MARTIN N, HAGER M D, et al. An aqueous redox-flow battery with high capacity and power: The TEMPTMA/MV system[J]. Angewandte Chemie (International Ed in English), 2016, 55(46): 14427-14430.
WINSBERG J, STOLZE C, MUENCH S, et al. TEMPO/phenazine combi-molecule: A redox-active material for symmetric aqueous redox-flow batteries[J]. ACS Energy Letters, 2016, 1(5): 976-980.
JANOSCHKA T, MARTIN N, MARTIN U, et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials[J]. Nature, 2015, 527(7576): 78-81.
HU B, FAN H, LI H B, et al. Five-membered ring nitroxide radical: A new class of high-potential, stable catholytes for neutral aqueous organic redox flow batteries[J]. Advanced Functional Materials, 2021, 31(35): doi: 10.1002/adfm.202102734.
FAN H, HU B, LI H B, et al. Conjugate-driven electron density delocalization of piperidine nitroxyl radical for stable aqueous zinc hybrid flow batteries[J]. Angewandte Chemie (International Ed in English), 2022, 61(17): doi: 10.1002/anie.202115908.
HU B, DEBRULER C, RHODES Z, et al. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage[J]. Journal of the American Chemical Society, 2017, 139(3): 1207-1214.
BEH E S, DE PORCELLINIS D, GRACIA R L, et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention[J]. ACS Energy Letters, 2017, 2(3): 639-644.
LUO J, HU B, DEBRULER C, et al. A π-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries[J]. Angewandte Chemie, 2018, 57(1): 231-235.
HU S Z, LI T Y, HUANG M B, et al. Phenylene-bridged bispyridinium with high capacity and stability for aqueous flow batteries[J]. Advanced Materials, 2021, 33(7): doi: 10.1002/adma.202005839.
LIU W Q, LIU Y, ZHANG H M, et al. A highly stable neutral viologen/bromine aqueous flow battery with high energy and power density[J]. Chemical Communications, 2019, 55(33): 4801-4804.
HUANG J H, HU S Z, YUAN X Z, et al. Radical stabilization of a tripyridinium-triazine molecule enables reversible storage of multiple electrons[J]. Angewandte Chemie, 2021, 60(38): 20921-20925.
HUANG M B, HU S Z, YUAN X Z, et al. Five-membered-heterocycle bridged viologen with high voltage and superior stability for flow battery[J]. Advanced Functional Materials, 2022, 32(16): doi: 10.1002/adfm.202111744.
... (3)两性锌基液流电池体系:锌电对在不同pH下具有不同电位值[18],如在中性(偏弱酸性)环境下,Zn2+/Zn电对的电位为-0.763 V(vs. SHE);在碱性环境下,Zn(OH)42-/Zn电对的电位为-1.26 V(vs. SHE,pH=14),且Zn(OH)42-/Zn电对在碱性电解液中的电位随OH-浓度而变化.而中性或弱酸性体系下的Br-/Br3-(1.087 V vs. SHE)、I-/I3-(0.536 V vs. SHE)、Fe2+/Fe3+(0.77 V vs. SHE,pH=0)等电对具有较高的正极电位,将具有较高正极电位的电对与碱性Zn(OH)42-/Zn电对可以得到开路电压接近2 V的两性锌基液流电池体系,如两性锌铁液流电池体系(1.99 V)[19]、两性锌碘液流电池体系(1.796 V)[18]等.电池较高的开路电压通常可以赋予其较高的功率特性和能量密度,但由于负极电解液呈碱性,正极电解液呈中性或酸性,电池运行过程中,载流子(OH-、H+等)会通过膜材料,使得电池负极pH逐渐降低,正极pH逐渐升高,正负极电解液pH最终达到平衡,导致电池性能的衰减. ...
... (3)两性锌基液流电池体系:锌电对在不同pH下具有不同电位值[18],如在中性(偏弱酸性)环境下,Zn2+/Zn电对的电位为-0.763 V(vs. SHE);在碱性环境下,Zn(OH)42-/Zn电对的电位为-1.26 V(vs. SHE,pH=14),且Zn(OH)42-/Zn电对在碱性电解液中的电位随OH-浓度而变化.而中性或弱酸性体系下的Br-/Br3-(1.087 V vs. SHE)、I-/I3-(0.536 V vs. SHE)、Fe2+/Fe3+(0.77 V vs. SHE,pH=0)等电对具有较高的正极电位,将具有较高正极电位的电对与碱性Zn(OH)42-/Zn电对可以得到开路电压接近2 V的两性锌基液流电池体系,如两性锌铁液流电池体系(1.99 V)[19]、两性锌碘液流电池体系(1.796 V)[18]等.电池较高的开路电压通常可以赋予其较高的功率特性和能量密度,但由于负极电解液呈碱性,正极电解液呈中性或酸性,电池运行过程中,载流子(OH-、H+等)会通过膜材料,使得电池负极pH逐渐降低,正极pH逐渐升高,正负极电解液pH最终达到平衡,导致电池性能的衰减. ...
... TEMPO(2,2,6,6-四甲基哌啶氧化物)是一类含氮氧自由基的有机物(图5),具有良好的电化学活性和可逆性,电位较高(0.8~1.1 V vs. SHE).TEMPO在水中溶解度较低,为了解决这一问题,研究者通过分子修饰的方法,在TEMPO引入羟基(4-OH-TEMPO)[64]、磺酸基[34]、三甲基氯化铵(4-TMA-TEMPO)[65]等亲水性基团,大幅提高了TEMPO的溶解度.为防止活性物质的交叉互串,Winsberg等[66]将TEMPO与吩嗪结合,设计合成出可以同时作为正、负极活性物质的有机化合物,将其用在静态电池中,电池电压为1.2 V,库仑效率约98.3%,连续稳定运行超过1800个循环容量几乎保持稳定.由于该电对的反应动力学较差,导致电池能量效率偏低(<50%).通过小分子聚合也是抑制电解液活性物质交叉互串的一种有效方法.Schubert等[67]设计合成了一种水溶性聚合物,聚合物侧链分别连接TEMPO和联吡啶盐类物质,这种聚合物活性物质具有较大的尺寸,电池因此可以采用成本较低的透析膜,从而大幅降低电池成本.然而,这种聚合物活性物质溶解度有限,理论体积容量只有10 Ah/L,且由于聚合物溶液黏度较高、分子空间位阻较大等问题,使得聚合物活性物质在电池中的利用率偏低(约41%). ...
... TEMPO(2,2,6,6-四甲基哌啶氧化物)是一类含氮氧自由基的有机物(图5),具有良好的电化学活性和可逆性,电位较高(0.8~1.1 V vs. SHE).TEMPO在水中溶解度较低,为了解决这一问题,研究者通过分子修饰的方法,在TEMPO引入羟基(4-OH-TEMPO)[64]、磺酸基[34]、三甲基氯化铵(4-TMA-TEMPO)[65]等亲水性基团,大幅提高了TEMPO的溶解度.为防止活性物质的交叉互串,Winsberg等[66]将TEMPO与吩嗪结合,设计合成出可以同时作为正、负极活性物质的有机化合物,将其用在静态电池中,电池电压为1.2 V,库仑效率约98.3%,连续稳定运行超过1800个循环容量几乎保持稳定.由于该电对的反应动力学较差,导致电池能量效率偏低(<50%).通过小分子聚合也是抑制电解液活性物质交叉互串的一种有效方法.Schubert等[67]设计合成了一种水溶性聚合物,聚合物侧链分别连接TEMPO和联吡啶盐类物质,这种聚合物活性物质具有较大的尺寸,电池因此可以采用成本较低的透析膜,从而大幅降低电池成本.然而,这种聚合物活性物质溶解度有限,理论体积容量只有10 Ah/L,且由于聚合物溶液黏度较高、分子空间位阻较大等问题,使得聚合物活性物质在电池中的利用率偏低(约41%). ...
... 与大部分吩嗪基及醌基电对类似,紫精及其衍生物(基于联吡啶结构,图5)也是一种常见的有机负极氧化还原电对.在众多紫精及其衍生物中,甲基紫精(MV)结构简单[64],在水中溶解度超过3.0 mol/L.作为负极氧化还原电对,MV在电化学反应过程中,MV2+先得到一个电子被还原成自由基阳离子(MV·+,-0.45 V vs. SHE),这一过程可逆性高、反应动力学好,未成对电子在联吡啶结构上发生离域使其在溶液中具有较高的稳定性;MV·+可再次得到电子被还原成MV0 (-0.76 V vs. SHE),这一过程生成的MV0溶解度很低,反应可逆性较差[70]. ...
... TEMPO(2,2,6,6-四甲基哌啶氧化物)是一类含氮氧自由基的有机物(图5),具有良好的电化学活性和可逆性,电位较高(0.8~1.1 V vs. SHE).TEMPO在水中溶解度较低,为了解决这一问题,研究者通过分子修饰的方法,在TEMPO引入羟基(4-OH-TEMPO)[64]、磺酸基[34]、三甲基氯化铵(4-TMA-TEMPO)[65]等亲水性基团,大幅提高了TEMPO的溶解度.为防止活性物质的交叉互串,Winsberg等[66]将TEMPO与吩嗪结合,设计合成出可以同时作为正、负极活性物质的有机化合物,将其用在静态电池中,电池电压为1.2 V,库仑效率约98.3%,连续稳定运行超过1800个循环容量几乎保持稳定.由于该电对的反应动力学较差,导致电池能量效率偏低(<50%).通过小分子聚合也是抑制电解液活性物质交叉互串的一种有效方法.Schubert等[67]设计合成了一种水溶性聚合物,聚合物侧链分别连接TEMPO和联吡啶盐类物质,这种聚合物活性物质具有较大的尺寸,电池因此可以采用成本较低的透析膜,从而大幅降低电池成本.然而,这种聚合物活性物质溶解度有限,理论体积容量只有10 Ah/L,且由于聚合物溶液黏度较高、分子空间位阻较大等问题,使得聚合物活性物质在电池中的利用率偏低(约41%). ...
1
... TEMPO(2,2,6,6-四甲基哌啶氧化物)是一类含氮氧自由基的有机物(图5),具有良好的电化学活性和可逆性,电位较高(0.8~1.1 V vs. SHE).TEMPO在水中溶解度较低,为了解决这一问题,研究者通过分子修饰的方法,在TEMPO引入羟基(4-OH-TEMPO)[64]、磺酸基[34]、三甲基氯化铵(4-TMA-TEMPO)[65]等亲水性基团,大幅提高了TEMPO的溶解度.为防止活性物质的交叉互串,Winsberg等[66]将TEMPO与吩嗪结合,设计合成出可以同时作为正、负极活性物质的有机化合物,将其用在静态电池中,电池电压为1.2 V,库仑效率约98.3%,连续稳定运行超过1800个循环容量几乎保持稳定.由于该电对的反应动力学较差,导致电池能量效率偏低(<50%).通过小分子聚合也是抑制电解液活性物质交叉互串的一种有效方法.Schubert等[67]设计合成了一种水溶性聚合物,聚合物侧链分别连接TEMPO和联吡啶盐类物质,这种聚合物活性物质具有较大的尺寸,电池因此可以采用成本较低的透析膜,从而大幅降低电池成本.然而,这种聚合物活性物质溶解度有限,理论体积容量只有10 Ah/L,且由于聚合物溶液黏度较高、分子空间位阻较大等问题,使得聚合物活性物质在电池中的利用率偏低(约41%). ...
1
... TEMPO(2,2,6,6-四甲基哌啶氧化物)是一类含氮氧自由基的有机物(图5),具有良好的电化学活性和可逆性,电位较高(0.8~1.1 V vs. SHE).TEMPO在水中溶解度较低,为了解决这一问题,研究者通过分子修饰的方法,在TEMPO引入羟基(4-OH-TEMPO)[64]、磺酸基[34]、三甲基氯化铵(4-TMA-TEMPO)[65]等亲水性基团,大幅提高了TEMPO的溶解度.为防止活性物质的交叉互串,Winsberg等[66]将TEMPO与吩嗪结合,设计合成出可以同时作为正、负极活性物质的有机化合物,将其用在静态电池中,电池电压为1.2 V,库仑效率约98.3%,连续稳定运行超过1800个循环容量几乎保持稳定.由于该电对的反应动力学较差,导致电池能量效率偏低(<50%).通过小分子聚合也是抑制电解液活性物质交叉互串的一种有效方法.Schubert等[67]设计合成了一种水溶性聚合物,聚合物侧链分别连接TEMPO和联吡啶盐类物质,这种聚合物活性物质具有较大的尺寸,电池因此可以采用成本较低的透析膜,从而大幅降低电池成本.然而,这种聚合物活性物质溶解度有限,理论体积容量只有10 Ah/L,且由于聚合物溶液黏度较高、分子空间位阻较大等问题,使得聚合物活性物质在电池中的利用率偏低(约41%). ...
... 与大部分吩嗪基及醌基电对类似,紫精及其衍生物(基于联吡啶结构,图5)也是一种常见的有机负极氧化还原电对.在众多紫精及其衍生物中,甲基紫精(MV)结构简单[64],在水中溶解度超过3.0 mol/L.作为负极氧化还原电对,MV在电化学反应过程中,MV2+先得到一个电子被还原成自由基阳离子(MV·+,-0.45 V vs. SHE),这一过程可逆性高、反应动力学好,未成对电子在联吡啶结构上发生离域使其在溶液中具有较高的稳定性;MV·+可再次得到电子被还原成MV0 (-0.76 V vs. SHE),这一过程生成的MV0溶解度很低,反应可逆性较差[70]. ...