Effects of CO2 capture on carbide-steel slag shape-stable phase-change composites
YANG Yang,1, XIONG Yaxuan,1, REN Jing2, ZHAO Yanqi,3, LI Shuo1, TIAN Xi1, DING Yulong4
1.Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2.Beijing Building Research Institute CO. , LTD. of CSCEC, Beijing 100076, China
3.School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
4.Birmingham Center for Energy Storage, University of Birmingham, Birmingham B15 2TT, UK
To achieve sufficient utilization of industrial solid waste and reduce the cost of thermal energy storage (TES) systems, a mixture of alkaline solid waste of carbide slag (CS) and steel slag (SS) is selected at a 1∶1 ratio for CO2 capture and sequestration. In addition, seven types of carbon-captured shape-stable phase-change composite materials (CCSMs) with different ratios of NaNO3/CS-SS were prepared by combining CS and SS as the skeleton materials after CO2 sequestration. Furthermore, thermogravimetric analysis was conducted to characterize the carbon sequestration properties of the CS-SS hybrid materials. Moreover, the TES performance, thermal cycling stability, chemical compatibility, and microstructure of CCS were characterized using differential scanning calorimetry (DSC), high-temperature thermal shock method, X-ray diffraction (XRD) analysis,and scanning electron microscopy. The results indicate that the carbon-sequestration rate of the CS-SS hybrid material is 24.48%. Furthermore, the mass ratio of NaNO3, CS, and SS in the best thermal performance sample of CC-SC4 was 2∶1∶1, with its thermal storage density reaching 444.2 J/g at a working temperature of 100—400 ℃, thermal conductivity of 1.057 W/(m·K), and chemical compatibility among the components. Sample CC-SC4 exhibited excellent thermal storage performance after 1440 heating/cooling cycles.
YANG Yang. Effects of CO2 capture on carbide-steel slag shape-stable phase-change composites[J]. Energy Storage Science and Technology, 2023, 12(12): 3690-3698
Fig. 2
X-ray diffraction spectrum of carbide slag-steel slag hybrid skeleton material before and after carbon capture
由图3可以看出,固碳后电石渣-钢渣混合骨架材料在700~800 ℃下有明显的质量下降,这部分质量下降对应CaCO3的分解,其质量变化率为-19.66%。根据文献[18]中的公式计算固碳后电石渣-钢渣混合骨架材料的实际固碳率,计算得到电石渣-钢渣混合骨架材料的固碳率K值为24.48%,即每吨电石渣-钢渣混合骨架材料可实际固定244.8 kg CO2,具有优异的固碳性能。
LI Q, LI C, DU Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy, 2019, 255: 113806.
GHANI S A A, JAMARI S S, ABIDIN S Z. Waste materials as the potential phase change material substitute in thermal energy storage system: A review[J]. Chemical Engineering Communications, 2021, 208(5): 687-707.
WANG T Y, ZHANG T Y, XU G Z, et al. A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110328.
LIU P, GU X B, RAO J, et al. Preparation and thermal properties of lauric acid/raw fly ash/carbon nanotubes composite as phase change material for thermal energy storage[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(11): 934-944.
QIU F, SONG S K, LI D N, et al. Experimental investigation on improvement of latent heat and thermal conductivity of shape-stable phase-change materials using modified fly ash[J]. Journal of Cleaner Production, 2020, 246: 118952.
HE H D, YANG L, CAO J X. Preparation of high temperature composite phase change energy storage materials by yellow phosphorus slag and Na2SO4-NaCl[J]. Inorganic Chemicals Industry, 2023, 55(2): 126-131.
WANG H X, XIONG Y X, REN J, et al. Fabrication and performance investigation of Na2CO3/Carbide slag shape-stable phase change composites[J]. Energy Storage Science and Technology, 2022, 11(12): 3819-3827.
XIONG Y X, WANG H X, HU Z L, et al. Study on thermal storage performance of carbide slag skeleton-shaped phase change materials[J]. Integrated Intelligent Energy, 2022, 44(4): 71-75.
YAO C H, XIONG Y X, REN J, et al. Preparation and properties of sodium nitrate/charcoal ash composite phase change thermal storage material[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 300-309.
XIONG Y X, YAO C H, SONG C Y, et al. Preparation and properties of low-cost phase-change heat storage materials based on semi-coke ash[J]. Huadian Technology, 2021, 43(7): 62-67.
SONG C Y, XIONG Y X, ZHANG J H, et al. Preparation and performance study of incinerated slag based shape-stable phase change composites[J]. CIESC Journal, 2022, 73(5): 2279-2287.
WANG Y, HUANG Y, YAO H, et al. Fabrication and characterization of form-stable solar salt/steel slag composite phase change material for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2021, 21(3): 332-340.
XIONG Y X, WANG H X, WU Y T, et al. Carbide slag based shape-stable phase change materials for waste recycling and thermal energy storage[J]. Journal of Energy Storage, 2022, 50: 104256.
XIONG Y X, YAO C H, REN J, et al. Waste semicoke ash utilized to fabricate shape-stable phase change composites for building heating and cooling[J]. Construction and Building Materials, 2022, 361: 129638.
XIONG Y X, SONG C Y, REN J, et al. Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage[J]. Process Safety and Environmental Protection, 2022, 162: 346-356.
XIONG Y X, SUN M Y, WU Y T, et al. Effects of synthesis methods on thermal performance of nitrate salt nanofluids for concentrating solar power[J]. Energy & Fuels, 2020, 34(9): 11606-11619.
REN G H, LIAO H Q, WU H B, et al. Carbonation characteristics of fly ash, carbide slag and their mixtures[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2295-2300.
YU Q, LU Y W, ZHANG C C, et al. Preparation and thermal properties of novel eutectic salt/nano-SiO2/expanded graphite composite for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110590.
GUO Q, WANG T. Study on preparation and thermal properties of sodium nitrate/silica composite as shape-stabilized phase change material[J]. Thermochimica Acta, 2015, 613: 66-70.
ANAGNOSTOPOULOS A, NAVARRO M E, STEFANIDOU M, et al. Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications[J]. Journal of Hazardous Materials, 2021, 413: 125407.
XIONG Y X, WANG H X, REN J, et al. Carbide slag recycling to fabricate shape-stable phase change composites for thermal energy storage[J]. Journal of Energy Storage, 2023, 60: 106694.
LIAO Z R, XU C, REN Y X, et al. A novel effective thermal conductivity correlation of the PCM melting in spherical PCM encapsulation for the packed bed TES system[J]. Applied Thermal Engineering, 2018, 135: 116-122.
RAHJOO M, GORACCI G, MARTAUZ P, et al. Evidence gathering: Thermal energy storage (TES) technologies[R]. Department for Energy Security and Net Zero, 2022