To explore the method of reducing automobile carbon emissions, it is vital to understand the carbon emission law of automobiles over their whole life cycle. To obtain the carbon emission law of electric vehicles in the whole life cycle, a carbon emission calculation model from material acquisition to vehicle production, use, recycling, and reuse is established by using the carbon emission factor method. The carbon emission of a BYD E6 car, for instance, is calculated using data on power structures from 2021, and the characteristics of carbon emissions are examined from the perspectives of various life cycle stages, vehicle components, and materials, as well as the potential for carbon emission reduction offered by power battery recycling technology and power structure. The results demonstrate that: the proportion of carbon emissions in the use stage is the highest, reaching 88.4%, followed by the material acquisition stage, accounting for 7.8%, and the carbon emissions in the recycling and reuse stage are negative, leading to positive benefits; Recovery and reuse can effectively reduce carbon emissions, accounting for 22.1% of the total carbon emissions, The power battery adopting echelon utilization technology shows the highest reuse rate, which reduces the carbon emission proportion of the power battery to 7.3% at the material acquisition stage; When the proportion of clean energy in the power structure reaches 67.5%, the carbon emissions of the single vehicle will be 54.6% of the emissions in 2021; When the proportion of clean energy in the power structure reaches 96%, the carbon emissions of the single vehicle will be 20.3% of the emissions in 2021. The research findings give China's policy on reducing carbon emissions from cars and industry technology a scientific foundation.
China Society of Automotive Engineering. Technology roadmap for energy saving and new energy vehicles 2.0[M]. 2nd ed. Beijing: China Machine Press, 2021.
TAGLIAFERRI C, EVANGELISTI S, ACCONCIA F,et al. Life cycle assessment of future electric and hybrid vehicles: A cradle-to-grave systems engineering approach[J]. Chemical Engineering Research and Design, 2016, 112: 298-309.
STASINOPOULOS P, SHIWAKOTI N, MCDONALD S.Life-cycle greenhouse gas emissions of electric and conventional vehicles in Australia[J/OL]. Proceedings of the 23rd World Congress on Intelligent Transport Systems.2016[2020-01-02]. https://www.semanticscholar.org/paper/Life-cycle-greenhouse-gas-emissions-of-electric-and-Stasinopoulos-Shiwakoti/252c23049cc6b3f246347f926ceb2fc48c9e8eb3.
OU X M, ZHANG X L, QIN Y N, et al. Life cycle analysis of electric vehicle charged by advanced technologies coal-power in future China[J]. Journal of China Coal Society, 2010, 35(1): 169-172.
HUANG Y, JI J P, MA X M. Greenhouse gas emissions reduction from battery electric automobile: A study based on EIO-LCA model[J]. China Environmental Science, 2012, 32(5): 947-953.
SHI X Q, LI X N, YANG J X. Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors[J]. Environmental Science, 2013, 34(1): 385-394.
WANG E C, FAN S, WU X B, et al. GREET-based model for analyzing pollutant emissions characteristic of new energy vehicles[J]. Journal of Shanghai University (Natural Science Edition), 2017, 23(5): 810-820.
ZHAO Z J, ZHANG P, ZHAO M N, et al. Analysis of energy consumption and carbon emission for automobile manufacturing process[J]. China Population, Resources and Environment, 2017, 27(S1): 186-190.
WANG C B, ZHANG L X, PANG M Y. A review on hybrid life cycle assessment: Development and application[J]. Journal of Natural Resources, 2015, 30(7): 1232-1242.
China Automobile Data Co., Ltd. China automotive life cycle assessment database (CALCD—2021)[DB].Tianjin:China Automotive Life Cycle Assessment Database, 2021.
Carbon Peak Carbon Neutralization Research Center.Greenhouse gas emission coefficient set for the whole life cycle of Chinese products(2022)[M]. Beijing: China Environmental Publishing Group, 2022.
ZHANG T S, CHEN X S. Accounting and strategy of carbon emission in production process of automobile manufacturing enterprises[J]. Enterprise Economy, 2014, 33(10): 17-21.
TIAN W B, WEI M, YIN J, et al. Analysis of energy consumption in automotive manufacture industry and some new methods for energy conservation[J]. Energy Conservation, 2007, 26(11): 21-23, 2.
ZHOU Y L, GONG B G, ZHANG X Q. Calculation and analysis of the carbon emissions of energy consumption in the automobile manufacturing[J]. Journal of Chaohu College, 2014, 16(3): 92-98.
ZHANG X Y, LUO H H, ZHANG L Q, et al.Research on key technologies of scrapped electric vehicle disassembly and classified recycling[J]. The Journal of New Industrialization, 2021,11(5): 62-64.
Global Energy Internet Development Cooperation Organization.Research on China's 2030 energy and power development plan and outlook for 2060[R/OL]. Global Energy Internet Development Cooperation Organization.Beijing, 2021[2022-01-03]. https://news.bjx.com.cn/html/20210319/1142777-1.
... 电动汽车报废后进入回收再利用阶段,再利用的主要材料有金属、动力电池、塑料和玻璃[20-22].本研究对回收后再用于汽车再制造的金属和动力电池的回收碳排放进行计算.金属回收主要通过冶炼的形式进行再利用,表2为金属材料清单及碳排放因子,消耗能源对应碳排放量859.59 kg,金属材料再利用碳排放核减4227.34 kg. ...
1
... 电动汽车报废后进入回收再利用阶段,再利用的主要材料有金属、动力电池、塑料和玻璃[20-22].本研究对回收后再用于汽车再制造的金属和动力电池的回收碳排放进行计算.金属回收主要通过冶炼的形式进行再利用,表2为金属材料清单及碳排放因子,消耗能源对应碳排放量859.59 kg,金属材料再利用碳排放核减4227.34 kg. ...
0
0
1
... 电动汽车报废后进入回收再利用阶段,再利用的主要材料有金属、动力电池、塑料和玻璃[20-22].本研究对回收后再用于汽车再制造的金属和动力电池的回收碳排放进行计算.金属回收主要通过冶炼的形式进行再利用,表2为金属材料清单及碳排放因子,消耗能源对应碳排放量859.59 kg,金属材料再利用碳排放核减4227.34 kg. ...
1
... 电动汽车报废后进入回收再利用阶段,再利用的主要材料有金属、动力电池、塑料和玻璃[20-22].本研究对回收后再用于汽车再制造的金属和动力电池的回收碳排放进行计算.金属回收主要通过冶炼的形式进行再利用,表2为金属材料清单及碳排放因子,消耗能源对应碳排放量859.59 kg,金属材料再利用碳排放核减4227.34 kg. ...
2
... 动力电池采用不同的回收技术,回收率以及耗能不同,目前磷酸铁锂电池回收再生利用主要技术有梯次利用、湿法回收和全组分“物理法”,表3为不同回收技术的回收率及耗能[23].图7为不同回收技术能耗及再利用碳排放核减量.动力电池采用梯次利用技术,消耗能源对应碳排放量84.99 kg,回收再利用抵消材料获取阶段碳排放量5994.06 kg;采用全组分“物理法”技术,消耗能源对应碳排放量1366.56 kg,回收再利用抵消材料获取阶段碳排放量5098.95 kg;采用全组分“湿法回收”技术,消耗能源对应碳排放量5.71 kg,回收再利用抵消材料获取阶段碳排放量84.36 kg. ...