Research progress on energy storage technologies of China in 2022
CHEN Haisheng,1, LI Hong2, XU Yujie1, CHEN Man3, WANG Liang1, DAI Xingjian1, XU Dehou4, TANG Xisheng5, LI Xianfeng6, HU Yongsheng2, MA Yanwei5, LIU Yu1, SU Wei7, WANG Qingsong8, CHEN Jun9, ZHUO Ping10, XIAO Liye5, ZHOU Xuezhi1, FENG Ziping11, JIANG Kai12, YU Haijun13, TANG Yongbing14, CHEN Renjie15, LIU Yatao16, ZHANG Yuxin1, LIN Xipeng1, GUO Huan1, ZHANG Han1, ZHANG Changkun6, HU Dongxu1, RONG Xiaohui2, ZHANG Xiong5, JIN Kaiqiang8, JIANG Lihua8, PENG Yumin3, LIU Shiqi13, ZHU Yilin1, WANG Xing1, ZHOU Xin1, OU Xuewu14, PANG Quanquan16, YU Zhenhua17, LIU Wei17, YUE Fen17, LI Zhen17, SONG Zhen17, WANG Zhifeng5, SONG Wenji11, LIN Haibo18, LI Jiecai18, YI Bin7, LI Fujun9, PAN Xinhui19, LI Li15, MA Yiming3, LI Huang8
1.Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3.Southern Power Grid Energy Storage Co. , Ltd. , Guangzhou 510623, Guangdong, China
4.National Energy Large Scale Physical Energy Storage Technologies R&D Center of Bijie High-tech Industrial Development Zone, Bijie 551712, Guizhou, China
5.Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
6.Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
7.Southern Power Grid Power Technology Co. , Ltd. , Guangzhou 510080, Guangdong, China
8.State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
9.Nankai University, Tianjin 300071, China
10.Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China
11.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
12.School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
13.Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of;Technology, Beijing 100124, China
14.Shenzhen Institute of Advanced Technology, inese Academy of Sciences, Shenzhen 518055, Guangdong, China
15.Beijing Institute of Technology, Beijing 100081, China
16.School of Materials Science and Engineering, Peking University, Beijing 100871, China
17.China Energy Storage Alliance, Beijing 100190, China
18.Jilin University, Changchun 130012, Jilin, China
19.Advanced Technology Research Institute, Beijing Institute of Technology, Ji'nan 250307, Shandong, China
Research progress on energy storage technologies of China in 2022 is reviewed in this paper. By reviewing and analyzing three aspects in terms of fundamental study, technical research, integration and demonstration, the progress on China's energy storage technologies in 2022 is summarized including hydro pumped energy storage, compressed air energy storage, flywheel, lithium-ion battery, lead battery, flow battery, sodium-ion battery, supercapacitor, new technologies, integration technology, firecontrol technology etc. It is found that important achievements in energy storage technologies have been obtained during 2022, and China is now the most active country in the world in energy storage fields on all the three aspects of fundamental study, technical research, integration and application.
在结构创新方面,宁德时代开发了基于预锂化技术的长寿命锂离子储能电池,推出了第三代CTP(Cell to Pack)技术——“麒麟电池”,通过结构优化,麒麟电池电池包体积利用率提升至72%,搭配三元锂电芯系统能量密度可达255 Wh/kg。亿伟锂能推出了LF560K电池,采用超大电池CTT(Cell to TWh)技术,可实现电芯单体容量达到560 Ah。蜂巢开发了L型储能电池系统,采用高速叠片技术、负极预锂技术、长循环专用电解液等技术,成组效率、能量密度均得到大幅提升。星恒电源推出了锰酸锂和LMFP复合电池,循环寿命可超过3000次,并且低温性能优良。天能股份推出了高能量密度的超能锰铁锂电池,并且通过了针刺安全实验,-20 ℃下的低温性能优良等。
电极材料、水系混合型超级电容器、柔性超级电容器、微型超级电容器和金属离子电容器等是目前超级电容器基础研究的重点方向[161-163]。在电极材料方面,金属有机骨架是目前研究的热点[164]。Zheng等[165]以Tdc和Bpy为有机配体,与Ni金属中心配位形成了多种形态的[Ni(Tdc)(Bpy)] n MOF纳米材料(Tdc:2, 5-噻吩二羧酸;Bpy:4, 4'-联吡啶),这种设计同时符合双配体策略和软硬酸碱原则,与活性炭负极组装成混合型水系超级电容器。在以碳基及其复合材料为主体的电极材料研究方面,Yang等[166]以煤焦油沥青为原料并采用空气预氧化活化的方法成功制备出氮掺杂富氧分层多孔碳,为高性能的超级电容器提供了高性价比的工业思路和性能优良的多孔碳基电极材料。Wang等[167]通过苎麻前驱体的高温自缺陷和金属原子的高温自组装,研发出具有层级结构的有序超结构碳,在高温工作环境下展现出了较高的能量密度。Zhao等[168]研究提出了一种快速高效的激光直写技术,用于原位制备锚定在氮掺杂激光诱导石墨烯复合电极上的氧化镍纳米颗粒,并成功组装成平面微型超级电容器作为可穿戴电子设备的储能元件。
图1给出了依据“Web of Science”核心数据库,以“Energy Storage”为主题词统计的2022年度中国机构和学者关于储能技术发表的SCI论文数。从图中可以看出,2022年度中国机构和学者共发表SCI论文数13941篇,其中储热技术、锂离子电池技术、钠离子电池技术、超级电容器的SCI论文数超过1000篇,为当前我国储能领域基础研究的热门技术方向。与2021年相同,总体上化学储能的SCI论文数仍高于物理储能,这主要是由于储能材料的发表论文数非常高,达到5542篇,其中化学储能材料研究明显比物理储能活跃。与2021年相比,物理储能在整个储能领域的占比有所增加,这主要是因为储热技术研究领域发表论文数有较多增加,同时抽水蓄能、压缩空气、飞轮储能等物理储能技术发表SCI论文数均有所增加。同时,2022年热泵储电、压缩二氧化碳、重力储能等新型储能技术也发表了一定数量的SCI论文,这说明新型储能技术的研究已相当活跃。
Fig. 1
Number of SCI papers on major energy storage technologies published from China in 2022
图2给出了依据“Web of Science”核心数据库,以“Energy Storage”为主题词统计的2022年度世界主要国家关于储能技术发表的SCI论文数。从图中可以看出,2022年,全世界共发表储能技术相关SCI论文27884篇,较2021年有小幅增加[6]。其中,中国、美国、印度、韩国、德国、英国、澳大利亚、沙特8个国家发表SCI论文数超过1000篇,伊朗发表999篇,也接近1000篇。与2021年相比,发表SCI论文数超过1000篇的国家增加1名,即沙特。2022年度,中国机构和学者发表了13941篇SCI论文,继续位居世界第一,在全世界储能领域发表SCI论文数占比达到50.0%,比2021年有所增加。中国保持了全球储能技术基础研究最活跃国家的地位,且领先程度在进一步扩大。从分项技术看,图1中所列出的所有单项技术,包括抽水蓄能、压缩空气、储热、飞轮、锂离子电池、超级电容、钠离子电池、铅电池、液态金属、液流电池,中国机构和学者2022年发表的SCI论文数均位于世界第一。
Fig. 2
Number of SCI papers on energy storage technologies published from major countries worldwide in 2022
图3给出了依据“Web of Science”核心数据库,以“Energy Storage”为主题词统计2010—2022年世界主要国家关于储能技术发表的SCI论文数,其中中国、美国、印度、韩国、德国、英国、澳大利亚、日本、法国、意大利、伊朗、沙特位列前12位。需要说明的是,图3中的2010—2021年发表SCI论文的数据和文献[6]中的数据稍有不同,主要是由于“Web of Science”数据库本身更新的原因,但总体趋势与文献[6]是一致的。相较于2021年,中国、印度和沙特2022年度发表SCI论文数有明显增加,而美国在2022年度发表SCI论文数2928篇,相较于2021年的3339篇有所减少,其他国家在2022年度发表SCI论文数相较于2021年变化不大。
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485.
LI X F, ZHANG H Z, ZHENG Q, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449.
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076.
CHEN P, DENG Y M, ZHANG X G, et al. Degradation trend prediction of pumped storage unit based on MIC-LGBM and VMD-GRU combined model[J]. Energies, 2022, 15(2): 605.
REN Y, ZHANG L L, CHEN J T, et al. Noise reduction study of pressure pulsation in pumped storage units based on sparrow optimization VMD combined with SVD[J]. Energies, 2022, 15(6): 2073.
TANG Y J, NI J B, XIAO Y X. Study on operation warning technique for pump storage unit based on analysis of noise[J]. Hydropower and Pumped Storage, 2022, 8(3): 35-38, 52.
ZHU S S, YANG G, LIN W W. Processing and analysis of measured load rejection data of pumped storage power station[J]. Water Resources Planning and Design, 2022(5): 78-85, 121.
LUO Y, SHAO D J, ZHAO J J, et al. Stability analysis of Tianchi pumped storage power station connected to central China power grid[C]//2022 7th Asia conference on power and electrical engineering (ACPEE). April 15-17, 2022, Hangzhou, China. IEEE, 2022: 606-612.
FENG C, ZHOU D Q, ZHENG Y, et al. Multi-objective optimization of back-to-back starting process for pumped storage units at low head area based on refined model[J]. Proceedings of the CSEE, 2023, 43(8): 3059-3071.
WU W L, LIU X P, HUANG C Z, et al. Research on static frequency start-up control technology for large pumped storage unit[J]. Water Resources and Power, 2022, 40(6): 196-200, 206.
CHEN W W, ZHANG Z Q, ZHANG G H, et al. Robust unit commitment of power systems integrated wind power considering demand response and pumped storage units[J]. Electric Power Engineering Technology, 2022, 41(2): 75-82.
JI L Y, LI C B, LI X P, et al. Multi-method combination site selection of pumped storage power station considering power structure optimization[J]. Sustainable Energy Technologies and Assessments, 2022, 49: doi: 10.1016/j.seta.2021.101680.
MA S Y, ZHOU B Y, WANG Q W, et al. Study on technologies and applications of joint participation of pumped storage and electrochemical energy storage in power grid frequency modulation[C]//2022 5th Asia Conference on Energy and Electrical Engineering (ACEEE). July 8-10, 2022, Kuala Lumpur, Malaysia. IEEE, 2022: 73-78.
MISHRA A K, SINGH B, KIM T. An efficient and credible grid-interfaced solar PV water pumping system with energy storage[J]. IEEE Journal of Photovoltaics, 2022, 12(3): 880-887.
LUO Y X, LI X M, PAN C, et al. Coordinated frequency modulation strategy of doubly fed pumped storage units with wind power[J]. Power System Protection and Control, 2022, 50(17): 76-85.
JI J M. Study on optimal dispatching of wind-solar hybrid power generation system considering pumped storage power station[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2022.
LI C P, LI J, LI J H, et al. Optimization strategy of secondary frequency modulation based on dynamic loss model of the energy storage unit[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104425.
LI Y, LI O T, WU F, et al. Coordinated multi-objective capacity optimization of wind-photovoltaic-pumped storage hybrid system[J]. Energy Reports, 2022, 8: 1303-1310.
SANG L W, WEI X, XU Y L, et al. The optimal allocation strategy of pumped storage for the collaborative operation with wind/solar generation[J]. Electric Power, 2022, 55(12): 86-90, 123.
CHANG Y H, LIU S Z, WANG L, et al. Research on low-carbon economic operation strategy of renewable energy-pumped storage combined system[J]. Mathematical Problems in Engineering, 2022, 2022: 1-13.
LUO Y X, WANG Y H, LIU C, et al. Two-stage robust optimal scheduling of wind power-photovoltaic-thermal power-pumped storage combined system[J]. IET Renewable Power Generation, 2022, 16(13): 2881-2891.
DENG Y W, WANG P F, MORABITO A, et al. Dynamic analysis of variable-speed pumped storage plants for mitigating effects of excess wind power generation[J]. International Journal of Electrical Power & Energy Systems, 2022, 135: doi: 10.1016/j.ijepes. 2021.107453.
ZHAO Z G, YANG J D, DONG X Z, et al. No-load characteristics and variable speed evolution of doubly-fed pumped storage unit based on dynamic experiment platform[J]. Proceedings of the CSEE, 2022, 42(20): 7439-7451.
WANG B, ZHANG J X, HU J M, et al. Optimization analysis of vibration and noise of variable speed pumped storage motor[J]. Mechanical & Electrical Technique of Hydropower Station, 2022, 45(2): 48-53.
QIAO Z W, SUN Y T, GE B J. Power performance analysis of variable speed pumped storage generator motor[J]. Large Electric Machine and Hydraulic Turbine, 2022(3): 8-13.
CHEN Y H, XU W, LIU Y, et al. Modeling and transient response analysis of doubly-fed variable speed pumped storage unit in pumping mode[J]. IEEE Transactions on Industrial Electronics, 2023, 70(10): 9935-9947.
CHEN Y H, DENG C H, LIU Y J, et al. Electromechanical transient modelling and active power-frequency coupling characteristics of doubly-fed variable speed pumped storage under pumping mode[J]. Proceedings of the CSEE, 2022, 42(3): 942-957.
CHEN Y H, XU W, LIU Y, et al. Small-signal system frequency stability analysis of the power grid integrated with type-II doubly-fed variable speed pumped storage[J]. IEEE Transactions on Energy Conversion, 2023, 38(1): 611-623.
SHI L J, LAO W J, WU F, et al. Frequency regulation control and parameter optimization of doubly-fed induction machine pumped storage hydro unit[J]. IEEE Access, 2022, 10: 102586-102598.
TENG J, WU X P, WU L B, et al. Research on the key technical problems in designing seawater pumped storage power stations[J]. China Rural Water and Hydropower, 2022(1): 159-162.
LU K F, HOU Z M, SUN W, et al. Potential evaluation and construction key technologies of pumped-storage power stations in mines of Yunnan Province[J]. Advanced Engineering Sciences, 2022, 54(1): 136-144.
LV H N, CHEN Y P, WU J F, et al. Performance of isobaric adiabatic compressed humid air energy storage system with shared equipment and road-return scheme[J]. Applied Thermal Engineering, 2022, 211: doi: 10.1016/j.applthermaleng.2022.118440.
CAO Z, ZHOU S H, HE Y, et al. Numerical study on adiabatic compressed air energy storage system with only one ejector alongside final stage compression[J]. Applied Thermal Engineering, 2022, 216: doi: 10.1016/j.applthermaleng.2022.119071.
RAN P, ZHANG H Y, QIAO Y, et al. Thermodynamic analysis for a novel steam injection adiabatic compressed air energy storage hybrid system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105424.
HUANG J J, XU Y J, GUO H, et al. Dynamic performance and control scheme of variable-speed compressed air energy storage[J]. Applied Energy, 2022, 325: doi: 10.1016/j.apenergy.2022.119338.
GUO H, XU Y J, HUANG L J, et al. Concise analytical solution and optimization of compressed air energy storage systems with thermal storage[J]. Energy, 2022, 258: doi: 10.1016/j.energy. 2022.124773.
HUANG L J, GUO H, XU Y J, et al. Influence of design point on off-design and cycling performance of compressed air energy storage systems-from key processes to the whole system[J]. Journal of Energy Storage, 2023, 57: doi: 10.1016/j.est.2022.106181.
GUO H, XU Y J, HUANG L J, et al. Optimization strategy using corresponding-point methodology (CPM) concerning finite time and heat conduction rate for CAES systems[J]. Energy, 2023, 266: doi: 10.1016/j.energy.2022.126336.
GENG X Q, XU Y J, HUANG J J, et al. Life cycle energy consumption and carbon emissions of advanced adiabatic compressed air energy storage[J]. Energy Storage Science and Technology, 2022, 11(9): 2971-2979.
LIN Z H, ZUO Z T, LI W, et al. Experimental and numerical analysis of the impeller backside cavity in a centrifugal compressor for CAES[J]. Energies, 2022, 15(2): 420.
MENG C, ZUO Z T, SUN J T, et al. Numerical study on the influence of shroud cavity in the high-pressure centrifugal compressor for compressed air energy storage system[J]. IOP Conference Series: Earth and Environmental Science, 2021, 804(3): doi: 10.1088/1755-1315/804/3/032018.
MENG C, ZUO Z T, SUN J T, et al. Internal inflow study on a high-pressure centrifugal compressor with shroud and backside cavity in a compressed air energy storage system[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2022, 236(7): 1418-1432.
SUN J T, ZUO Z T, LIANG Q, et al. Theoretical and experimental study on effects of wet compression on centrifugal compressor performance[J]. Applied Thermal Engineering, 2022, 212: doi: 10.1016/j.applthermaleng.2022.118163.
MENG C, ZUO Z T, GUO W B, et al. Experimental and numerical investigation on off-design performance of a high-pressure centrifugal compressor in compressed air energy storage system[J]. Journal of Energy Storage, 2022, 53: doi: 10.1016/j.est.2022.105081.
LI H Y, LI W, ZHANG X H, et al. Performance and flow characteristics of the liquid turbine for supercritical compressed air energy storage system[J]. Applied Thermal Engineering, 2022, 211: doi: 10.1016/j.applthermaleng.2022.118491.
SHAO Z Y, LI W, ZHU Y L, et al. Experimental investigation of intake and leakage performance for a shrouded radial turbine in the compressed air energy storage system[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104875.
HUANG G R, ZHU Y L, WANG X, et al. Flow characteristics of last-segment axial turbine adopted in compressed air energy storage system under low load and windage conditions[J]. International Journal of Energy Research, 2022, 46(15): 23908-23926.
HU S W, XU W Q, CAI M L, et al. Energy efficiency and power density analysis of a tube array liquid piston air compressor/expander for compressed air energy storage[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105674.
XIONG J W, PAN X, ZHU Y, et al. Solidity optimization of compressed air energy storage turbine during off-design conditions[C]//2nd World Energy Conference and 7th UK Energy Storage Conference, BIRMINGHAM, UNITED KINGDOM, 2022.
QU Y L, WANG L, LIN X P, et al. Heat transfer characteristics of mixed convection in packed beds[J]. Chemical Engineering Science, 2022, 255: doi: 10.1016/j.ces.2022.117679.
LIAO D, HU Z M, WANG W, et al. Research on heat transfer and flow characteristics of cubic fillers[J]. Energy Storage Science and Technology, 2023, 12(3): 676-684.
ZHANG Z H, JIN X G, BAO H X, et al. Experimental study of Ca(OH)2/CaO thermochemical energy storage in a mixed heating reactor[J]. Energy Storage Science and Technology, 2023, 12(1): 227-235.
GE G Q, WANG H R, LI R X, et al. Performance analysis and optimization design of heat accumulator in compressed air energy storage[J]. Journal of Xi'an Jiaotong University, 2023, 57(1): 45-54.
WU Y T, KOU Z F, ZHANG C C, et al. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger[J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995.
HAN Y, CUI H, MA H L, et al. Temperature and pressure variations in salt compressed air energy storage (CAES) Caverns considering the air flow in the underground wellbore[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104846.
LI P, CHEN Z G, ZHOU X Z, et al. Temperature regulation model and experimental study of compressed air energy storage cavern heat exchange system[J]. Sustainability, 2022, 14(11): 6788.
LI Y, YU H, LUO X, et al. Full cycle modeling of inter-seasonal compressed air energy storage in aquifers[J]. Energy, 2022, 263: doi: 10.1016/j.energy.2022.125987.
QIN S K, XIA C C, ZHOU S W. Air tightness of compressed air storage energy Caverns with polymer sealing layer subjected to various air pressures[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022: doi: 10.1016/j.jrmge.2022.10.007.
RAN P, WANG Y, WANG Y S, et al. Thermodynamic, economic and environmental investigations of a novel solar heat enhancing compressed air energy storage hybrid system and its energy release strategies[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105423.
XUE X J, LV J Y, CHEN H, et al. Thermodynamic and economic analyses of a new compressed air energy storage system incorporated with a waste-to-energy plant and a biogas power plant[J]. Energy, 2022, 261: doi: 10.1016/j.energy.2022.125367.
XUE X J, LU D, LIU Y F, et al. Thermodynamic and economic analysis of new compressed air energy storage system integrated with water electrolysis and H2-Fueled solid oxide fuel cell[J]. Energy, 2023, 263: doi: 10.1016/j.energy.2022.126114.
ZHENG A H, CAO Z, XU Y J, et al. Analysis of hybrid Adiabatic Compressed Air Energy Storage-Reverse Osmosis desalination system with different topological structures[J]. Desalination, 2022, 530: doi: 10.1016/j.desal.2022.115667.
LI S K, LIN Y, PAN F. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562.
JIANG Z, ZOU B Y, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771.
LÜ H X, FENG D L, FENG Y H, et al. Effect and mechanism of doped graphene nanosheets on phase transition properties of sodium nitrate[J]. Acta Physica Sinica, 2022, 71(15): doi: 10.7498/aps.71.20220354.
LYU H X, FENG D L, FENG Y H, et al. Enhanced thermal energy storage of sodium nitrate by graphene nanosheets: Experimental study and mechanisms[J]. Journal of Energy Storage, 2022, 54: doi: 10.1016/j.est.2022.105294.
ZHANG S, JIN Y G, YAN Y Y. Depression of melting point and latent heat of molten salts as inorganic phase change material: Size effect and mechanism[J]. Journal of Molecular Liquids, 2022, 346: doi: 10.1016/j.molliq.2021.117058.
LIU Y L, DENG Y, ZHENG J L, et al. Micro mechanism of latent heat enhancement of polyethylene glycol/aminated modified palygorskite composite phase change materials[J]. Applied Clay Science, 2022, 228: doi: 10.1016/j.clay.2022.106641.
LV L Q, WANG J K, JI M T, et al. Effect of structural characteristics and surface functional groups of biochar on thermal properties of different organic phase change materials: Dominant encapsulation mechanisms[J]. Renewable Energy, 2022, 195: 1238-1252.
ZHANG G H, GUO Y Q, ZHANG B, et al. Preparation and control mechanism of nano-phase change emulsion with high thermal conductivity and low supercooling for thermal energy storage[J]. Energy Reports, 2022, 8: 8301-8311.
TIAN H Y, TANG J, YUAN S R, et al. The mechanisms study of the effect of sludge hydrolysis residual preparation on the performance of composite phase change materials[J]. Journal of Energy Storage, 2022, 56: doi: 10.1016/j.est.2022.105869.
QU Y L, WANG L, LIN X P, et al. Mixed convective heat transfer characteristics and mechanisms in structured packed beds[J]. Particuology, 2023, 82: 122-133.
ZHANG S Q, PU L, XU L L, et al. Study on dominant heat transfer mechanism in vertical smooth/finned-tube thermal energy storage during charging process[J]. Applied Thermal Engineering, 2022, 204: doi: 10.1016/j.applthermaleng.2021.117935.
WANG Y, ZHU Z L, KE H B, et al. Study of ice spike formation mechanism in the water-based phase change energy storage[J]. Journal of Enhanced Heat Transfer, 2023, 30(1): 53-73.
ZHU N, WU T, HU P F, et al. Research on flow characteristics of ice slurry in pipe under nonadiabatic condition[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(10): 77-82.
WANG H X, XIONG Y X, REN J, et al. Fabrication and performance investigation of Na2CO3/Carbide slag shape-stable phase change composites[J]. Energy Storage Science and Technology, 2022, 11(12): 3819-3827.
LI Y X, TAN Z W, LI C C. Research on the preparation and application of a phase-change gel for cold storage[J]. Energy Storage Science and Technology, 2022, 11(12): 3845-3854.
XU Y F, WU S M, LI Y J. Research progress of CaO-CO2 thermochemical heat storage technology for concentrated solar power plant[J]. Power Generation Technology, 2022, 43(5): 740-747.
GENG Z, ZHANG M Q, LU X W, et al. Structure optimization of solar thermal storage tank and analysis of its thermal storage and release performance[J]. Thermal Power Generation, 2023, 52(2): 64-72.
Lin L, Wang L, Bai Y K, et al. Experimental study on the storage performance of the innovative spray-type packed bed thermal energy storage[J]. Applied Thermal Engineering, 2022, 219: doi: 10.1016/j.applthermaleng.2022.119415.
ZHOU K, LI Y L, LI M H, et al. Research progress on the coupling technology of coal-fired power generation-physical thermal storage and analysis for the system peaking capacity[J]. Clean Coal Technology, 2022, 28(3): 159-172.
ZHANG J, PANG Z G, LI L, et al. Application research of dynamic ice slurry cold storage air conditioning system in a constant temperature and humidity laboratory in Beijing[J]. Energy Conservation, 2022, 41(11): 11-13.
LIU G. Research on optimization design and control of magnetic bearings support system for flywheel energy storage[D]. Zhenjiang: Jiangsu University, 2022.
CHEN Y G, ZANG B Q. Analysis of alternating flux density harmonics inside the rotor of a 1 MW high-speed interior permanent magnet synchronous machine used for flywheel energy storage systems[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105664.
BAO Z, JING H L, LIU W, et al. Performance evaluation of a superconducting flywheel energy storage system incorporating an AC homopolar motor layout[J]. Superconductor Science and Technology, 2022, 35(8): doi: 10.1088/1361-6668/ac7585.
LIU H S, XU X L, WEI S Z, et al. Flywheel energy storage participates in frequency modulation power division control based on improving power grid assessment index of North China power grid[J]. Energy Storage Science and Technology, 2023, 12(4): 1176-1184.
CHEN X D, LI Y, HUAN D J, et al. Influence of filament winding tension on the deformation of composite flywheel rotors with H-shaped hubs[J]. Polymers, 2022, 14(6): 1155.
WANG H Z, WU Z G, LIU K, et al. Modeling and control strategies of a novel axial hybrid magnetic bearing for flywheel energy storage system[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 3819-3829.
LV D Y, LV Q C, LI Y B, et al. The design and optimization of high-speed permanent magnet machines for maglev flywheel energy storage system[J]. Large Electric Machine and Hydraulic Turbine, 2022(2): 6-12, 44.
LI Z R, NIE Z L, XU J E, et al. Harmonic analysis and neutral-point potential control of interleaved parallel three-level inverters for flywheel energy storage system[J]. Frontiers in Energy Research, 2022, 9: doi: 10.3389/fenrg.2021.811845.
ZHANG J H, LIU Y F, WU Z K, et al. Suppression strategy for DC microgrid bus voltage fluctuation of hybrid flywheel and battery energy storage[J]. Control and Instruments in Chemical Industry, 2022, 49(6): 699-706.
XU Q X, TENG W, WU X, et al. Capacity configuration method of flywheel storage system for suppressing power fluctuation of wind farms[J]. Energy Storage Science and Technology, 2022, 11(12): 3906-3914.
LUO Y D, TIAN L J, WANG Y, et al. Coordinated control strategy and optimal capacity configuration for flywheel energy storage participating in primary frequency regulation of power grid[J]. Automation of Electric Power Systems, 2022, 46(9): 71-82.
LI Y J, CHEN Y, LI Y Y. Design of regenerative braking and power quality harnessed synthetically system in traction substation based on flywheel energy storage[J]. Energy Storage Science and Technology, 2022, 11(12): 3883-3894.
LI S S, WANG J L, LI G J, et al. Demonstration applications in wind solar energy storage field based on MW flywheel array system[J]. Energy Storage Science and Technology, 2022, 11(2): 583-592.
YIN J, LIN H, SHI J, et al. Lead-carbon batteries toward future energy storage: from mechanism and materials to applications[J]. Electrochemical Energy Reviews, 2022, 5(3): doi: 10.1007/s41918-022-00134-w.
CHEN L, WANG L, HU S, et al. Study on the application of vanillin in the negative electrode of lead carbon battery[J]. Chinese LABAT Man, 2022, 59(5): 246-250.
YANAMANDRA K, BEHERA R K, DAOUD A, et al. Migration barrier estimation of carbon in lead for lead-acid battery applications: A density functional theory approach[J]. Solids, 2022, 3(2): 177-187.
WANG Z D, TUO X P, ZHOU J Q, et al. Performance study of large capacity industrial lead‑carbon battery for energy storage[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022. 105398.
BAUKNECHT S, KOWAL J, BOZKAYA B, et al. The effects of cell configuration and scaling factors on constant current discharge and dynamic charge acceptance in lead-acid batteries[J]. Journal of Energy Storage, 2022, 45: doi: 10.1016/j.est.2021.103667.
SHI C G, PENG X X, DAI P, et al. Investigation and suppression of oxygen release by LiNi0.8Co0.1Mn0.1O2 cathode under overcharge conditions[J]. Advanced Energy Materials, 2022, 12(20): doi: 10.1002/aenm.202200569.
WANG D H, MA Y J, XU W Q, et al. Controlled isotropic canalization of microsized silicon enabling stable high-rate and high-loading lithium storage[J]. Advanced Materials, 2023: doi: 10.1002/adma.202212157.
YAO Y X, YAO N, ZHOU X R, et al. Ethylene-carbonate-free electrolytes for rechargeable Li-ion pouch cells at sub-freezing temperatures[J]. Advanced Materials, 2022, 34(45): doi: 10. 1002/adma.202206448.
BAO C S, ZHENG C J, WU M F, et al. 12 µm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries[J]. Advanced Energy Materials, 2023, 13(13): doi: 10.1002/aenm.202204028.
LIN J, FAN E S, ZHANG X D, et al. Sustainable upcycling of spent lithium-ion batteries cathode materials: Stabilization by in situ Li/Mn disorder[J]. Advanced Energy Materials, 2022, 12(26): doi: 10.1002/aenm.202201174.
WANG W K, WANG A B, JIN Z Q. Challenges on practicalization of lithium sulfur batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 593-597.
LIU S Q, WANG B Y, ZHANG X, et al. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries[J]. Matter, 2021, 4(5): 1511-1527.
HUA W X, SHANG T X, LI H A, et al. Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis[J]. Nature Catalysis, 2023, 6(2): 174-184.
WANG Z Y, GE H L, LIU S, et al. High-entropy alloys to activate the sulfur cathode for lithium-sulfur batteries[J]. Energy & Environmental Materials, 2022: doi: 10.1002/eem2.12358.
JI H Q, WANG Z K, SUN Y W, et al. Weakening Li+ de-solvation barrier for cryogenic Li-S pouch cells[J]. Advanced Materials, 2023, 35(9): doi: 10.1002/adma.202208590.
CHU F L, WANG M, LIU J M, et al. Low concentration electrolyte enabling cryogenic lithium-sulfur batteries[J]. Advanced Functional Materials, 2022, 32(44): doi: 10.1002/adfm.202205393.
JI Y C, YANG K, LIU M Q, et al. PIM-1 as a multifunctional framework to enable high-performance solid-state lithium-sulfur batteries[J]. Advanced Functional Materials, 2021, 31(47): doi: 10.1002/adfm.202104830.
CHEN J H, LU H C, ZHANG X, et al. Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery[J]. Energy Storage Materials, 2022, 50: 387-394.
LIU Y, LIU H W, LIN Y T, et al. Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery[J]. Advanced Functional Materials, 2021, 31(41): doi: 10.1002/adfm.202104863.
PAN H, ZHANG M H, CHENG Z, et al. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Science Advances, 2022, 8(15): doi: 10.1126/sciadv.abn4372.
ZHANG D, CHU W Q, WANG D Y, et al. High-voltage aluminium-sulfur batteries with functional polymer membrane[J]. Advanced Functional Materials, 2022, 32(39): doi: 10.1002/adfm.202205562.
ZHOU X F, YU Z X, YAO Y, et al. A high-efficiency Mo2C electrocatalyst promoting the polysulfide redox kinetics for Na-S batteries[J]. Advanced Materials, 2022, 34(14): doi: 10.1002/adma.202200479.
LI Z, WANG C L, LING F X, et al. Room-temperature sodium-sulfur batteries: Rules for catalyst selection and electrode design[J]. Advanced Materials, 2022, 34(32): doi: 10.1002/adma.202204214.
WU J R, TIAN Y, GAO Y F, et al. Rational electrolyte design toward cyclability remedy for room-temperature sodium-sulfur batteries[J]. Angewandte Chemie International Edition, 2022, 61(30): doi: 10.1002/anie.202205416.
SU L W, XU Q H, SONG Y, et al. Ce(NO3)4: A dual-functional electrolyte additive for room-temperature sodium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 450: doi: 10.1016/j.cej. 2022.137978.
ZOU Q L, SUN Y, LIANG Z J, et al. Achieving efficient magnesium-sulfur battery chemistry via polysulfide mediation[J]. Advanced Energy Materials, 2021, 11(31): doi: 10.1002/aenm. 202101552.
WU T H, LIU X, ZHANG X, et al. Full concentration gradient-tailored Li-rich layered oxides for high-energy lithium-ion batteries[J]. Advanced Materials, 2021, 33(2): doi: 10.1002/adma.202001358.
YU H J, SO Y G, REN Y, et al. Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries[J]. Journal of the American Chemical Society, 2018, 140(45): 15279-15289.
SONG J, NING F H, ZUO Y X, et al. Entropy stabilization strategy for enhancing the local structural adaptability of Li-rich cathode materials[J]. Advanced Materials, 2023, 35(7): doi: 10.1002/adma.202208726.
LIU T C, LIU J J, LI L X, et al. Origin of structural degradation in Li-rich layered oxide cathode[J]. Nature, 2022, 606(7913): 305-312.
AIKEN C P, LOGAN E R, ELDESOKY A, et al. Li[Ni0.5Mn0.3Co0.2]O2 as a superior alternative to LiFePO4 for long-lived low voltage Li-ion cells[J]. Journal of the Electrochemical Society, 2022, 169(5): doi: 10.1149/1945-7111/ac67b5.
XIA Y S, CAO H Y, XU F, et al. Polymeric membranes with aligned zeolite nanosheets for sustainable energy storage[J]. Nature Sustainability, 2022, 5(12): 1080-1091.
ZHANG Y H, LI F, LI T Y, et al. Insights into an air-stable methylene blue catholyte towards kW-scale practical aqueous organic flow batteries[J]. Energy & Environmental Science, 2023, 16(1): 231-240.
LIU Y, XIE C X, LI X F. Bromine assisted MnO2 dissolution chemistry: Toward a hybrid flow battery with energy density of over 300 Wh L-1[J]. Angewandte Chemie International Edition, 2022, 61(51): doi: 10.1002/anie.202213751.
YU D L, ZHI L P, ZHANG F F, et al. Scalable alkaline zinc-iron/nickel hybrid flow battery with energy density up to 200 wh L-1[J]. Advanced Materials, 2023, 35(7): doi: 10.1002/adma.202209390.
YUAN Z Z, LIANG L X, DAI Q, et al. Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage[J]. Joule, 2022, 6(4): 884-905.
DING F X, ZHAO C L, XIAO D D, et al. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability[J]. Journal of the American Chemical Society, 2022, 144(18): 8286-8295.
GAO A, ZHANG Q H, LI X Y, et al. Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries[J]. Nature Sustainability, 2021, 5(3): 214-224.
FU F, LIU X A, FU X G, et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-30113-0.
SHI Q H, QI R J, FENG X C, et al. Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries[J]. Nature Communications, 2022, 13: 3205.
SHRAER S D, LUCHININ N D, TRUSSOV I A, et al. Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-31768-5.
CHI X W, ZHANG Y, HAO F, et al. An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-30517-y.
WANG X E, ZHANG C, SAWCZYK M, et al. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes[J]. Nature Materials, 2022, 21(9): 1057-1065.
CHEN F F, WANG X E, ARMAND M, et al. Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications[J]. Nature Materials, 2022, 21(10): 1175-1182.
SU Y, RONG X H, GAO A, et al. Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries[J]. Nature Communications, 2022, 13: 4181.
SU Y, RONG X H, LI H, et al. High-entropy microdomain interlocking polymer electrolytes for advanced all-solid-state battery chemistries[J]. Advanced Materials, 2023, 35(1): doi: 10.1002/adma.202209402.
LI Y Q, ZHOU Q, WENG S T, et al. Interfacial engineering to achieve an energy density of over 200 Wh kg-1 in sodium batteries[J]. Nature Energy, 2022, 7(6): 511-519.
LI K L, LI J P, ZHU Q Z, et al. Three-dimensional MXenes for supercapacitors: A review[J]. Small Methods, 2022, 6(4): doi: 10.1002/smtd.202101537.
XING F F, BI Z H, Su F, et al. Unraveling the design principles of battery-supercapacitor hybrid devices: From fundamental mechanisms to microstructure engineering and challenging perspectives[J]. Advanced Energy Materials, 2022, 12(26): doi: 10.1002/aenm.202200594.
HE B, ZHANG Q C, PAN Z H, et al. Freestanding metal-organic frameworks and their derivatives: An emerging platform for electrochemical energy storage and conversion[J]. Chemical Reviews, 2022, 122(11): 10087-10125.
ZHENG S S, SUN Y, XUE H G, et al. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance[J]. National Science Review, 2022, 9(7): doi: 10.1093/nsr/nwab197.
YANG X X, ZHAO S, ZHANG Z Z, et al. Pore structure regulation of hierarchical porous carbon derived from coal tar pitch via pre-oxidation strategy for high-performance supercapacitor[J]. Journal of Colloid and Interface Science, 2022, 614: 298-309.
ZHAO J A, WANG S M, GAO L J, et al. NiO nanoparticles anchored on N-doped laser-induced graphene for flexible planar micro-supercapacitors[J]. ACS Applied Nano Materials, 2022, 5(8): 11314-11323.
LIU W J, ZHANG X, XU Y N, et al. 2D graphene/MnO heterostructure with strongly stable interface enabling high-performance flexible solid-state lithium-ion capacitors[J]. Advanced Functional Materials, 2022, 32(30): doi: 10.1002/adfm.202202342.
ZHANG T Q, MAO Z, SHI X J, et al. Tissue-derived carbon microbelt paper: A high-initial-coulombic-efficiency and low-discharge-platform K+-storage anode for 4.5 V hybrid capacitors[J]. Energy & Environmental Science, 2022, 15(1): 158-168.
JIANG Y Q, MA K, SUN M L, et al. All-climate stretchable dendrite-free Zn-ion hybrid supercapacitors enabled by hydrogel electrolyte engineering[J]. Energy & Environmental Materials, 2023, 6(2): doi: 10.1002/eem2.12357.
ZHAO Y Z, LIANG Q D, MUGO S M, et al. Self-healing and shape-editable wearable supercapacitors based on highly stretchable hydrogel electrolytes[J]. Advanced Science, 2022, 9(24): doi: 10.1002/advs.202201039.
XU K, CHEN J X, MENG Y, et al. Preparation of Cu-NiCoP microspheres and their supercapacitive performance[J]. Energy Storage Science and Technology, 2023, 12(2): 357-365.
TANG P, TAN W Y, LI F Z, et al. A pseudocapacitor diode based on ion-selective surface redox effect[J]. Advanced Materials, 2023, 35(10): doi: 10.1002/adma.202209186.
ZHANG X H, SUN X Z, AN Y B, et al. Design of a fast-charge lithium-ion capacitor pack for automated guided vehicle[J]. Journal of Energy Storage, 2022, 48: doi: 10.1016/j.est.2022.104045.
ZHU Y Y, ZHENG S H, LU P F, et al. Kinetic regulation of MXene with water-in-LiCl electrolyte for high-voltage micro-supercapacitors[J]. National Science Review, 2022, 9(7): doi: 10.1093/nsr/nwac024.
CHI F Y, HU Y J, HE W Y, et al. Graphene ionogel ultra-fast filter supercapacitor with 4 V workable window and 150 ℃ operable temperature[J]. Small, 2022, 18(18): doi: 10.1002/smll.202200916.
CHEN Y L, LIU M, FAN J Y, et al. Present situation, technology conceptualization and key problem for gravity energy storage[J]. Advanced Engineering Sciences, 2022, 54(1): 97-105.
XIAO L Y, ZHANG J Y, NIE Z P, et al. Underground energy storage engineering[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(2): 1-9.
QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12(3): 835-845.
ZHAO Y M, QIU Q Q, NIE Z P, et al. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage[J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905.
WANG L, LIN X P, ZHANG H, et al. Thermodynamic analysis and optimization of pumped thermal-liquid air energy storage (PTLAES)[J]. Applied Energy, 2023, 332: doi: 10.1016/j.apenergy.2022.120499.
XUE X J, ZHAO C Y. Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores[J]. Applied Energy, 2023, 329: doi: 10.1016/j.apenergy.2022.120274.
PANG J S, XU C, WU Y Z, et al. Thermodynamic analysis and parameter optimization of a Chemical Looping Electricity Storage system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105832.
SUN R Q, ZHAO Y L, LIU M, et al. Thermodynamic design and optimization of pumped thermal electricity storage systems using supercritical carbon dioxide as the working fluid[J]. Energy Conversion and Management, 2022, 271: doi: 10.1016/j.enconman.2022.116322.
ZHANG H, WANG L, LIN X P, et al. Parametric optimisation and thermo-economic analysis of Joule-Brayton cycle-based pumped thermal electricity storage system under various charging-discharging periods[J]. Energy, 2023, 263: doi: 10.1016/j.energy.2022.125908.
ZHAO Y L, SONG J, LIU M, et al. Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials[J]. Renewable Energy, 2022, 186: 431-456.
LIU S H, BAI H P, JIANG P, et al. Economic, energy and exergy assessments of a Carnot battery storage system: Comparison between with and without the use of the regenerators[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est. 2022.104577.
FAN R X, XI H. Energy, exergy, economic (3E) analysis, optimization and comparison of different Carnot battery systems for energy storage[J]. Energy Conversion and Management, 2022, 252: doi: 10.1016/j.enconman.2021.115037.
FAN R X, XI H. Exergoeconomic optimization and working fluid comparison of low-temperature Carnot battery systems for energy storage[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104453.
TIAN W B, XI H. Comparative analysis and optimization of pumped thermal energy storage systems based on different power cycles[J]. Energy Conversion and Management, 2022, 259: doi: 10.1016/j.enconman.2022.115581.
ZHANG Y C, XIE Z Z. Thermodynamic efficiency and bounds of pumped thermal electricity storage under whole process ecological optimization[J]. Renewable Energy, 2022, 188: 711-720.
ZHAO Y, SONG J, ZHAO C Y, et al. Thermodynamic investigation of latent-heat stores for pumped-thermal energy storage[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105802.
SHI X P, HE Q, LU C, et al. Variable load modes and operation characteristics of closed Brayton cycle pumped thermal electricity storage system with liquid-phase storage[J]. Renewable Energy, 2023, 203: 715-730.
YANG H, LI J D, GE Z H, et al. Dynamic characteristics and control strategy of pumped thermal electricity storage with reversible Brayton cycle[J]. Renewable Energy, 2022, 198: 1341-1353.
YANG H, LI J D, GE Z H, et al. Dynamic performance for discharging process of pumped thermal electricity storage with reversible Brayton cycle[J]. Energy, 2023, 263: doi: 10.1016/j.energy.2022.125930.
LU C, SHI X P, HE Q, et al. Dynamic modeling and numerical investigation of novel pumped thermal electricity storage system during startup process[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105409.
XUE X J, ZHAO Y, ZHAO C Y. Multi-criteria thermodynamic analysis of pumped-thermal electricity storage with thermal integration and application in electric peak shaving of coal-fired power plant[J]. Energy Conversion and Management, 2022, 258: doi: 10.1016/j.enconman.2022.115502.
LI L X, XU Y J, YIN Z, et al. Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1824-1834.
WU C, WAN Y K, LIU Y, et al. Thermodynamic simulation and economic analysis of a novel liquid carbon dioxide energy storage system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105544.
SUN L, TANG B, XIE Y H. Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization[J]. Energy, 2022, 256: doi: 10.1016/j.energy. 2022.124648.
LU C, HE Q, HAO Y P, et al. Thermodynamic analysis and efficiency improvement of trans-critical compressed carbon dioxide energy storage system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105480.
LIU Z, LIU X, ZHANG W F, et al. Thermodynamic analysis on the feasibility of a liquid energy storage system using CO2-based mixture as the working fluid[J]. Energy, 2022, 238: doi: 10.1016/j.energy.2021.121759.
TAO F Y, WANG H R, LI R X, et al. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling[J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501.
ZHAO P, ZHANG S Q, XU W P, et al. Performance analysis of a pumped hydro assisted near-isothermal compressed carbon dioxide energy storage system with gas/liquid phase change process[J]. International Journal of Energy Research, 2022, 46(10): 13711-13725.
ZHANG T H, GAO J M, ZHANG Y, et al. Thermodynamic analysis of a novel adsorption-type trans-critical compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2022, 270: doi: 10.1016/j.enconman.2022. 116268.
TANG B, SUN L, XIE Y H. Comprehensive performance evaluation and optimization of a liquid carbon dioxide energy storage system with heat source[J]. Applied Thermal Engineering, 2022, 215: doi: 10.1016/j.applthermaleng.2022.118957.
XU W P, ZHAO P, GOU F F, et al. A combined heating and power system based on compressed carbon dioxide energy storage with carbon capture: Exploring the technical potential[J]. Energy Conversion and Management, 2022, 260: doi: 10.1016/j.enconman.2022.115610.
JAE C Y, IK L J. Thermodynamic analysis of compressed and liquid carbon dioxide energy storage system integrated with steam cycle for flexible operation of thermal power plant[J]. Energy Conversion and Management, 2022, 256: doi: 10.1016/j.enconman.2022.115374.
ZHANG Y, LIANG T Y, YANG K. An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization[J]. Energy, 2022, 247: doi: 10.1016/j.energy.2022.123566.
FU H L, HE Q, SONG J T, et al. Thermodynamic of a novel solar heat storage compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2021, 247: doi: 10.1016/j.enconman.2021.114757.
QI M, PARK J, LANDON R S, et al. Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential[J]. Renewable and Sustainable Energy Reviews, 2022, 153: doi: 10.1016/j.rser.2021.111732.
QI M, LEE J, HONG S, et al. Flexible and efficient renewable-power-to-methane concept enabled by liquid CO2 energy storage: Optimization with power allocation and storage sizing[J]. Energy, 2022, 256: doi: 10.1016/j.energy.2022.124583.
HUANG R, ZHOU K, LIU Z. Reduction on the inefficiency of heat recovery storage in a compressed carbon dioxide energy storage system[J]. Energy, 2022, 244: doi: 10.1016/j.energy. 2022.123224.
WANG J, YAN X P, LU M J, et al. Structural assessment of printed circuit heat exchangers in supercritical CO2 waste heat recovery systems for ship applications[J]. Journal of Thermal Science, 2022, 31(3): 689-700.
STANEK B, OCHMANN J, BARTELA Ł, et al. Isobaric tanks system for carbon dioxide energy storage-The performance analysis[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104826.
LI K. Design and research of tower solar thermal power generation system based on supercritical carbon dioxide brayton cycle[D].Lanzhou: Lanzhou Jiatong University, 2022.
LI Y, YU H, TANG D, et al. A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods[J]. Renewable Energy, 2022, 187: 1130-1153.
HAN Z H, SUN Y, LI P, et al. Research on operation mode of compressed air/carbon dioxide energy storage system[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 119-125.
YAN X S, WANG X D, HAN X, et al. Study on coupling scheme of liquid compressed carbon dioxide energy storage system and thermal power unit[J]. Thermal Power Generation, 2023, 52(2): 90-100.
ZHANG Y, WU Y T, YANG K. Dynamic characteristics of a two-stage compression and two-stage expansion Compressed Carbon dioxide energy storage system under sliding pressure operation[J]. Energy Conversion and Management, 2022, 254: doi: 10.1016/j.enconman.2022.115218.
WANG D, SI L, XIE X Y, et al. Simulation of dynamic characteristics of coal-fired unit coupled with supercritical carbon dioxide energy storage cycle[J]. Proceedings of the CSEE, 2023, 43(6): 2142-2153.
YAN S, ZHOU X B, LI H M, et al. Utilizing in situ alloying reaction to achieve the self-healing, high energy density and cost-effective Li||Sb liquid metal battery[J]. Journal of Power Sources, 2021, 514: doi: 10.1016/j.jpowsour.2021.230578.
ZHOU H, LI H M, GONG Q, et al. A sodium liquid metal battery based on the multi-cationic electrolyte for grid energy storage[J]. Energy Storage Materials, 2022, 50: 572-579.
ZHOU Y, LI G Q, LI B X, et al. Operando formation of multi-channel positive electrode achieved via tellurium alloying in liquid metal battery[J]. Energy Storage Materials, 2022, 53: 927-936.
LI W M, SHI H, DU K F, et al. Revealing the phase evolution and lithium diffusion in the liquid Sn-Sb electrode[J]. Journal of Electroanalytical Chemistry, 2021, 901: doi: 10.1016/j.jelechem. 2021.115719.
LI W M, SHI H, DU K F, et al. Modeling the mass transfer and phase transition of Sn-Sb positive electrode in a liquid metal battery[J]. Journal of Electroanalytical Chemistry, 2022, 909: doi: 10.1016/j.jelechem.2022.116144.
JIANG Y D, ZHANG D H, SHI Y X, et al. Lithium transport and intermetallic generation in Li-Bi liquid metal batteries[J]. Electrochimica Acta, 2021, 405: doi.org/10.1016/j.electacta. 2021.139779.
ZHOU X B, GAO C L, SHEN Y, et al. Multi-field coupled model for liquid metal battery: Comparative analysis of various flow mechanisms and their effects on mass transfer and electrochemical performance[J]. Energy Reports, 2022, 8: 5510-5521.
ZHOU X B, ZHOU H, YAN S, et al. Increasing the actual energy density of Sb-based liquid metal battery[J]. Journal of Power Sources, 2022, 534: doi: 10.1016/j.jpowsour.2022.231428.
JIA M Y, CHEN F, WU Y Q, et al. Microstructure and shear fracture behavior of Mo/AlN/Mo symmetrical compositionally graded materials[J]. Materials Science and Engineering: A, 2022, 834: doi: 10.1016/j.msea.2021.142591.
SHI Q L, GUO Z L, WANG S, et al. Physics-based fractional-order model and parameters identification of liquid metal battery[J]. Electrochimica Acta, 2022, 428: doi: 10.1016/j.electacta.2022. 140916.
YANG K, LIU Q R, ZHENG Y P, et al. Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries[J]. Angewandte Chemie International Edition, 2021, 60(12): 6326-6332.
JIANG H Z, HAN X Q, DU X F, et al. A PF6-permselective polymer electrolyte with anion solvation regulation enabling long-cycle dual-ion battery[J]. Advanced Materials, 2022, 34(9): doi: 10.1002/adma.202108665.
SUN Z Q, ZHU K J, LIU P, et al. Fluorination treatment of conjugated protonated polyanilines for high-performance sodium dual-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(42): doi: 10.1002/anie.202211866.
TONG X Y, OU X W, WU N Z, et al. Dual-ion batteries: High oxidation potential≈6.0V of concentrated electrolyte toward high-performance dual-ion battery[J]. Advanced Energy Materials, 2021, 11(25): doi: 10.1002/aenm.202170096.
WANG B Y, HUANG Y H, WANG Y, et al. Synergistic solvation of anion: An effective strategy toward economical high-performance dual-ion battery[J]. Advanced Functional Materials, 2023, 33(12): doi: 10.1002/adfm.202212287.
CHENG Z J, GUO L F, DONG Q Y, et al. Highly durable and ultrafast cycling of dual-ion batteries via in situ construction of cathode-electrolyte interphase[J]. Advanced Energy Materials, 2022, 12(44): doi: 10.1002/aenm.202202253.
LV S Y, FANG T M, DING Z Z, et al. A high-performance quasi-solid-state aqueous zinc-dual halogen battery[J]. ACS Nano, 2022, 16(12): 20389-20399.
LI J, HAN C J, OU X W, et al. Concentrated electrolyte for high-performance Ca-ion battery based on organic anode and graphite cathode[J]. Angewandte Chemie International Edition, 2022, 61(14): doi: 10.1002/anie.202116668.
SHENG M H, ZHANG F, JI B F, et al. A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density[J]. Advanced Energy Materials, 2017, 7(7): doi: 10. 1002/aenm.201601963.
ZHANG X L, TANG Y B, ZHANG F, et al. A novel aluminum-graphite dual-ion battery[J]. Advanced Energy Materials, 2016, 6(11): doi: 10.1002/aenm.201502588.
WANG M, JIANG C L, ZHANG S Q, et al. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage[J]. Nature Chemistry, 2018, 10(6): 667-672.
WANG H T, WANG C, ZHANG F, et al. Homogeneous alloying reaction via self-assembly strategy for high-areal-density dual-ion batteries[J]. Chemical Engineering Journal, 2022, 449: doi.org/10.1016/j.cej.2022.137708.
YANG X R, NI Y X, LU Y, et al. Designing quinone-based anodes with rapid kinetics for rechargeable proton batteries[J]. Angewandte Chemie International Edition, 2022, 61(39): doi: 10.1002/anie.202209642.
CHEN Q L, LI L H, WANG W M, et al. Thiuram monosulfide with ultrahigh redox activity triggered by electrochemical oxidation[J]. Journal of the American Chemical Society, 2022, 144(41): 18918-18926.
XU X Y, ZHANG S Q, XU K, et al. Janus dione-based conjugated covalent organic frameworks with high conductivity as superior cathode materials[J]. Journal of the American Chemical Society, 2023, 145(2): 1022-1030.
LING Z B, HUANG Z, TIAN K. The state of art and trend of large scale battery energy storage system technology[J]. Distribution & Utilization, 2018, 35(9): 3-8, 21.
YANG S C, LI Q W, ZHOU S D, et al. Construction of digital twin model of lithium-ion battery for intelligent management[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1734-1744.
LI J L, FANG Z J, LI Y X, et al. Overview of cluster cooperative control of mobile energy storage system for emergency response[J]. Electric Power Construction, 2022, 43(3): 75-82.
HOU T. Electrochemical energy storage control strategy for assisting frequency modulation of new power system[D]. Jilin: Northeast Dianli University, 2022.
YANG J, LIN Z K, TANG J, et al. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems[J]. CIESC Journal, 2022, 73(8): 3394-3405.
LIU B Z, CAO L Y, ZENG T, et al. Effect of the binding force on the safety of LiFePO4 cells[J]. Energy Storage Science and Technology, 2022, 11(8): 2556-2563.
JIA Z Z, SONG L F, MEI W X, et al. The preload force effect on the thermal runaway and venting behaviors of large-format prismatic LiFePO4 batteries[J]. Applied Energy, 2022, 327: doi: 10.1016/j.apenergy.2022.120100.
ZHAI H J, CHI M S, LI J Y, et al. Thermal runaway propagation in large format lithium ion battery modules under inclined ceilings[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104477.
CHENG Z X, CAO W, HU B, et al. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station[J]. Energy Storage Science and Technology, 2023, 12(3): 923-933.
SUN H L, ZHANG L, DUAN Q L, et al. Experimental study on suppressing thermal runaway propagation of lithium-ion batteries in confined space by various fire extinguishing agents[J]. Process Safety and Environmental Protection, 2022, 167: 299-307.
LIU Y J, YANG K, ZHANG M J, et al. The efficiency and toxicity of dodecafluoro-2-methylpentan-3-one in suppressing lithium-ion battery fire[J]. Journal of Energy Chemistry, 2022, 65: 532-540.
WANG W H, HE S, HE T F, et al. Suppression behavior of water mist containing compound additives on lithium-ion batteries fire[J]. Process Safety and Environmental Protection, 2022, 161: 476-487.
LU J X, ZHANG Y, MA C Y, et al. Study on fire-extinguishing performance of hydrogel on lithium-iron-phosphate batteries[J]. Energy Storage Science and Technology, 2022, 11(8): 2637-2644.
GUO D L, GUO P Y, SUN L, et al. Research on the influence of water mist on the performance of lithium iron phosphate energy storage battery modules[J]. Fire Science and Technology, 2022, 41(8): 1093-1097.
YUAN S, CHANG C Y, ZHOU Y, et al. The extinguishment mechanisms of a micelle encapsulator F-500 on lithium-ion battery fires[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105186.
ZHANG F R, LIU P W, HE Y X, et al. Cooling performance optimization of air cooling lithium-ion battery thermal management system based on multiple secondary outlets and baffle[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104678.
ZUO S G, CHEN S P, YIN B. Performance analysis and improvement of lithium-ion battery thermal management system using mini-channel cold plate under vibration environment[J]. International Journal of Heat and Mass Transfer, 2022, 193: doi: 10.1016/j.ijheatmasstransfer.2022.122956.
LI X T, ZHOU Z Y, ZHANG M J, et al. A liquid cooling technology based on fluorocarbons for lithium-ion battery thermal safety[J]. Journal of Loss Prevention in the Process Industries, 2022, 78: doi: 10.1016/j.jlp.2022.104818.
YI F, JIAQIANG E, ZHANG B, et al. Effects analysis on heat dissipation characteristics of lithium-ion battery thermal management system under the synergism of phase change material and liquid cooling method[J]. Renewable Energy, 2022, 181: 472-489.
CHEN X, ZHOU F, YANG W, et al. A hybrid thermal management system with liquid cooling and composite phase change materials containing various expanded graphite contents for cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2022, 200: doi: 10.1016/j.applthermaleng.2021.117702.
OUYANG T C, LIU B L, WANG C C, et al. Novel hybrid thermal management system for preventing Li-ion battery thermal runaway using nanofluids cooling[J]. International Journal of Heat and Mass Transfer, 2023, 201: doi: 10.1016/j.ijheatmasstransfer. 2022.123652.
REN R Y, ZHAO Y H, DIAO Y H, et al. Experimental study on preheating thermal management system for lithium-ion battery based on U-shaped micro heat pipe array[J]. Energy, 2022, 253: doi: 10.1016/j.energy.2022.124178.
SONG Y H, LYU N W, SHI S, et al. Safety warning for lithium-ion batteries by module-space air-pressure variation under thermal runaway conditions[J]. Journal of Energy Storage, 2022, 56: doi: 10.1016/j.est.2022.105911.
ZHANG W C, OUYANG N, YIN X X, et al. Data-driven early warning strategy for thermal runaway propagation in Lithium-ion battery modules with variable state of charge[J]. Applied Energy, 2022, 323: doi: 10.1016/j.apenergy.2022.119614.
JI C W, ZHANG Z Z, WANG B, et al. Study on thermal runaway warning method of lithium-ion battery[J]. Journal of Loss Prevention in the Process Industries, 2022, 78: doi: 10.1016/j.jlp.2022.104785.
LIAO Z H, ZHANG J G, GAN Z Y, et al. Thermal runaway warning of lithium-ion batteries based on photoacoustic spectroscopy gas sensing technology[J]. International Journal of Energy Research, 2022, 46(15): 21694-21702.
ZHOU Z Z, ZHOU X D, LI M Y, et al. Experimentally exploring prevention of thermal runaway propagation of large-format prismatic lithium-ion battery module[J]. Applied Energy, 2022, 327: doi: 10.1016/j.apenergy.2022.120119.
CAO J H, LING Z Y, LIN S, et al. Thermochemical heat storage system for preventing battery thermal runaway propagation using sodium acetate trihydrate/expanded graphite[J]. Chemical Engineering Journal, 2022, 433: doi: 10.1016/j.cej.2021.133536.
WANG Z R, WANG K H, WANG J L, et al. Inhibition effect of liquid nitrogen on thermal runaway propagation of lithium ion batteries in confined space[J]. Journal of Loss Prevention in the Process Industries, 2022, 79: doi.org/10.1016/j.jlp.2022.104853.
HUANG Z H, ZHANG Y, SONG L F, et al. Preventing effect of liquid nitrogen on the thermal runaway propagation in 18650 lithium ion battery modules[J]. Process Safety and Environmental Protection, 2022, 168: 42-53.
MENG X D, LI S, FU W D, et al. Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires[J]. eTransportation, 2022, 11: doi: 10.1016/j.etran. 2021.100142.
... 图2给出了依据“Web of Science”核心数据库,以“Energy Storage”为主题词统计的2022年度世界主要国家关于储能技术发表的SCI论文数.从图中可以看出,2022年,全世界共发表储能技术相关SCI论文27884篇,较2021年有小幅增加[6].其中,中国、美国、印度、韩国、德国、英国、澳大利亚、沙特8个国家发表SCI论文数超过1000篇,伊朗发表999篇,也接近1000篇.与2021年相比,发表SCI论文数超过1000篇的国家增加1名,即沙特.2022年度,中国机构和学者发表了13941篇SCI论文,继续位居世界第一,在全世界储能领域发表SCI论文数占比达到50.0%,比2021年有所增加.中国保持了全球储能技术基础研究最活跃国家的地位,且领先程度在进一步扩大.从分项技术看,图1中所列出的所有单项技术,包括抽水蓄能、压缩空气、储热、飞轮、锂离子电池、超级电容、钠离子电池、铅电池、液态金属、液流电池,中国机构和学者2022年发表的SCI论文数均位于世界第一. ...
... 图3给出了依据“Web of Science”核心数据库,以“Energy Storage”为主题词统计2010—2022年世界主要国家关于储能技术发表的SCI论文数,其中中国、美国、印度、韩国、德国、英国、澳大利亚、日本、法国、意大利、伊朗、沙特位列前12位.需要说明的是,图3中的2010—2021年发表SCI论文的数据和文献[6]中的数据稍有不同,主要是由于“Web of Science”数据库本身更新的原因,但总体趋势与文献[6]是一致的.相较于2021年,中国、印度和沙特2022年度发表SCI论文数有明显增加,而美国在2022年度发表SCI论文数2928篇,相较于2021年的3339篇有所减少,其他国家在2022年度发表SCI论文数相较于2021年变化不大. ...
... ]中的数据稍有不同,主要是由于“Web of Science”数据库本身更新的原因,但总体趋势与文献[6]是一致的.相较于2021年,中国、印度和沙特2022年度发表SCI论文数有明显增加,而美国在2022年度发表SCI论文数2928篇,相较于2021年的3339篇有所减少,其他国家在2022年度发表SCI论文数相较于2021年变化不大. ...
... 图2给出了依据“Web of Science”核心数据库,以“Energy Storage”为主题词统计的2022年度世界主要国家关于储能技术发表的SCI论文数.从图中可以看出,2022年,全世界共发表储能技术相关SCI论文27884篇,较2021年有小幅增加[6].其中,中国、美国、印度、韩国、德国、英国、澳大利亚、沙特8个国家发表SCI论文数超过1000篇,伊朗发表999篇,也接近1000篇.与2021年相比,发表SCI论文数超过1000篇的国家增加1名,即沙特.2022年度,中国机构和学者发表了13941篇SCI论文,继续位居世界第一,在全世界储能领域发表SCI论文数占比达到50.0%,比2021年有所增加.中国保持了全球储能技术基础研究最活跃国家的地位,且领先程度在进一步扩大.从分项技术看,图1中所列出的所有单项技术,包括抽水蓄能、压缩空气、储热、飞轮、锂离子电池、超级电容、钠离子电池、铅电池、液态金属、液流电池,中国机构和学者2022年发表的SCI论文数均位于世界第一. ...
... 图3给出了依据“Web of Science”核心数据库,以“Energy Storage”为主题词统计2010—2022年世界主要国家关于储能技术发表的SCI论文数,其中中国、美国、印度、韩国、德国、英国、澳大利亚、日本、法国、意大利、伊朗、沙特位列前12位.需要说明的是,图3中的2010—2021年发表SCI论文的数据和文献[6]中的数据稍有不同,主要是由于“Web of Science”数据库本身更新的原因,但总体趋势与文献[6]是一致的.相较于2021年,中国、印度和沙特2022年度发表SCI论文数有明显增加,而美国在2022年度发表SCI论文数2928篇,相较于2021年的3339篇有所减少,其他国家在2022年度发表SCI论文数相较于2021年变化不大. ...
... ]中的数据稍有不同,主要是由于“Web of Science”数据库本身更新的原因,但总体趋势与文献[6]是一致的.相较于2021年,中国、印度和沙特2022年度发表SCI论文数有明显增加,而美国在2022年度发表SCI论文数2928篇,相较于2021年的3339篇有所减少,其他国家在2022年度发表SCI论文数相较于2021年变化不大. ...