储能科学与技术, 2023, 12(5): 1604-1615 doi: 10.19799/j.cnki.2095-4239.2023.0072

储能材料与器件

调控LiPF6 基电解液溶剂化结构稳定富锂锰基正极界面

胡川,1, 胡志伟2, 李振东2, 李帅1, 王豪1, 王丽平,1

1.电子科技大学,四川 成都 611731

2.天目湖先进储能技术研究院,江苏 常州 213300

Tailoring LiPF6-base electrolyte solvation structure toward a stable Lithium-rich manganese-based cathode interface

HU Chuan,1, HU Zhiwei2, LI Zhendong2, LI Shuai1, WANG Hao1, WANG Liping,1

1.University of Electronic Science and Technology, Chengdu 611731, Sichuan, China

2.Tianmu Lake Institute of Advanced Energy Storage Technologies, Changzhou 213300, Jiangsu, China

通讯作者: 王丽平,研究员,从事低成本高能量密度锂电池正极材料研究,E-mail:lipingwang@uestc.edu.cn

收稿日期: 2023-02-14   修回日期: 2023-03-12  

基金资助: 四川省自然科学基金杰出青年科学基金.  2023NSFSC1914

Received: 2023-02-14   Revised: 2023-03-12  

作者简介 About authors

胡川(1998—),男,硕士研究生,从事富锂锰基正极功能电解液研究,E-mail:2130388134@qq.com; E-mail:2130388134@qq.com

摘要

富锂锰基正极材料具有高比容量和低成本的优势,有望成为下一代高能量密度金属锂电池的正极材料。然而在实际应用中,其相对于金属锂高达4.8 V的充电截止电压,会引发电解液氧化分解失效,导致正极与电解液的界面恶化使得电池难以稳定循环。为此本文开发了以1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚(TTE)充当促配位溶剂的六氟磷酸锂(LiPF6)基新型高电压电解液。实验与表征结果说明,适量TTE引入后具有更多锂盐阴离子参与锂离子配位的溶剂化结构的电解液,能够在正极表面形成5 nm厚且富含氟元素的正极电解液中间相(CEI),稳定正极界面并抑制正极层状结构的退化。使用新型电解液的富锂锰基正极对金属锂扣式电池,以99.8%的平均效率循环400次后,仍有83.9%的容量保持率(0.5 C)。组装1.25 Ah的富锂锰基正极对金属锂软包电池,在0.04 C下能够提供370 Wh/kg的质量能量密度,在0.08 C下循环45次后,仍有80%的容量保持率,表现出良好的应用前景。本研究有助于推动富锂锰基正极的应用,为高能量密度金属锂电池的研发提供实验依据。

关键词: 富锂锰基正极 ; 高电压 ; 电解液 ; 正极-电解液中间相 ; 层状结构 ; 金属锂软包电池

Abstract

Li-rich Mn-based cathode has the advantages of high specific capacity and low cost, which is expected to be the cathode material for the next generation of high-energy density Li-metal batteries. However, in practical applications, its charging cutoff voltage is 4.8 V versus Li, leading to the failure of electrolyte oxygenation decompositions, thereby deteriorating the interface between the cathode and electrolyte, making stable battery cycling challenging. A novel high-voltage electrolyte based on LiPF6 is developed, in which 1, 1, 2, 2-tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropylether (TTE) is used as a solvent to promote coordination. The experimental and characterization results show that many Li anions participate in the solvated structure of Li+ coordination after introducing appropriate TTE in the electrolyte, which can form a 5-nm-thick fluorine-rich cathode electrolyte interphase (CEI) on the surface of the cathode, stabilizing its interface and inhibiting the degradation of the cathode layer structure. The Li-rich Mn-based cathode Li-metal battery with the new electrolyte has an 83.9% capacity retention rate after 400 cycles with an average efficiency of 99.8% (0.5 C). The 1.25-Ah Li-rich Mn-based cathode Li-metal battery pouch cell can provide 370 Wh/kg mass-energy density at 0.04 C and still has an 80% capacity retention rate after 45 cycles at 0.08 C, showing a good application prospect. This study is helpful to promote the application of Li-rich Mn-based cathode and provide an experimental basis for the research and development of high energy density Li-metal batteries.

Keywords: lithium-rich manganese-based cathode ; high voltage ; electrolyte solvent ; cathode-electrolyte interphase ; layered structure ; lithium metal pouch cell

PDF (6770KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

胡川, 胡志伟, 李振东, 李帅, 王豪, 王丽平. 调控LiPF6 基电解液溶剂化结构稳定富锂锰基正极界面[J]. 储能科学与技术, 2023, 12(5): 1604-1615

HU Chuan. Tailoring LiPF6-base electrolyte solvation structure toward a stable Lithium-rich manganese-based cathode interface[J]. Energy Storage Science and Technology, 2023, 12(5): 1604-1615

锂离子电池技术经历了三十年的发展和进步,学术上有更为深刻的认识和理解,商业上取得了更为广泛的应用和需求。而时至今日,开发高能量密度、循环耐久性、高安全性、低成本的下一代锂离子电池,仍是电池从业人员未竟的事业[1]。出于提升电池能量密度的需求,高容量与高电压的正极材料的开发应用十分有必要。由Lu等[2]提出的富锂锰基正极,具备高放电比容量(>250 mAh/g),低成本的优势,有望成为下一代高能量密度金属锂电池正极材料,吸引着众多研究人员的注意。

然而,传统碳酸酯类电解液,在富锂锰基正极高充电截止电压(4.8 V vs Li/Li+)下会发生剧烈的界面副反应,影响电池的循环性能。Cha等[3]报道的Li1.17Ni0.17Mn0.5Co0.17O2/Li半电池,应用传统碳酸酯类溶剂的电解液在0.5 C下恒流充放电,循环70次后电池容量跳水,表现出较差的电化学循环性能。Fan等[4]报道溶剂碳酸乙烯酯(EC)自4.3 V的对锂电位开始持续氧化分解;Zhang等[5]报道,除了高电压的氧化,富锂锰基正极的亲核超氧基团会攻击碳酸酯溶剂,加剧电解液的分解;Li等[6]还发现电解液分解产物中的HF会溶出富锂锰基正极中的过渡金属元素,破坏正极结构的稳定性。

一种广泛报道的策略,是通过向电解液中加入添加剂的方式提升电池的循环性能。Zheng等[7]引入1%的苯基乙烯基砜,它有更高的反应活性,在电解液中先于其余组分被氧化,并且在正极表面原位形成具有保护性的CEI稳定电池循环。Li等[6]使用添加剂LiBOB,消除电解液分解产物HF,提升电池的循环性能。然而,CEI随着循环的进行会经历溶解与重构,伴随着高反应活性的添加剂在正极表面持续反应而被耗尽,导致添加剂难以持续保护电解液组分[8]。降低电解液中溶剂组分的反应性是另一种可行的策略,最高占据分子轨道(Highest occupied molecular orbital,HOMO)能级低的砜类溶剂[9]、腈类溶剂[10-11]和氟化溶剂[12-13]等被用作电解液的助溶剂[14],能够减少溶剂分解提升高电压正极的长循环性能;高锂盐浓度电解液形成的更多锂盐阴离子参与配位的接触离子对(Contact ion pairs,CIP)和聚集体(Aggregate,AGG)的溶剂化结构,与常规锂盐浓度电解液的溶剂分离离子对(solvent separates ion pairs,SSIP)溶剂化结构相比,不仅能促进有限溶剂与Li+高度配位降低溶剂分子的反应性[15-16],Zheng等[17]还证实形成CIP和AGG的溶剂化结构可以促进锂盐阴离子参与成膜,有助于提升电极-电解液中间相的无机组分从而稳定界面。只是高锂盐浓度的电解液,通常具有较大黏度[18-19],不利于实际应用。Ken等[20]向高浓度的砜基电解液中引入低黏度的TTE开发的局部高浓电解液(localized high-concentration electrolyte,LHCE),不仅降低了电解液整体的粘度,非溶剂化的TTE引入后还能保留浓缩电解液的特质,能够实现高电压正极的循环稳定性。只是在设计LHCE配方时,通常需要一种高溶解度的锂盐如LiTFSI、LiFSI,而排除了常见的锂盐LiPF6、LiClO4、LiBOB等的应用。

本文认为虽然低饱和浓度的LiPF6基电解液难以开发LHCE的配方,但出于调控LiPF6基电解液溶剂化结构的设计思路,有限体积的促配位溶剂TTE引入后的低局域饱和浓度LiPF6基电解液中,溶剂及锂盐阴离子与Li+的配位比例能够大幅提升。最终开发耐高压的新型电解液1 mol/L LiPF6 FEC/DMC/TTE+1%LiDFOB(FEC/DMC/TTE体积比为1∶2∶3),应用在富锂锰基正极Li1.2Ni0.13Co0.13Mn0.54O2(LRM)对金属锂的电池中,研究其对电池中LRM正极循环性能的影响及作用机制。此外,本文还设计了Ah级LRM正极对金属锂软包电池,验证新型电解液的实用性。

1 实验部分

1.1 电解液制备

LiPF6基电解液,以氟代碳酸乙烯酯(FEC)和碳酸二甲酯(DMC)为溶剂,以质量分数为1%的二氟草酸硼酸锂(LiDFOB)作为高电压添加剂,构成基础电解液配方1 mol/L LiPF6 FEC/DMC+1% LiDFOB(FEC/DMC体积比为1∶2,标记为F-基)。通过引入原溶剂一倍、两倍、三倍体积的TTE,分别配制电解液1 mol/L LiPF6 FEC/DMC/TTE+1% LiDFOB(FEC/DMC/TTE体积比为1∶2∶3,标记为F-TTE)、1 mol/L LiPF6 FEC/DMC/TTE+1% LiDFOB(FEC/DMC/TTE体积比为1∶2∶6,标记为F-2TTE)和1 mol/L LiPF6 FEC/DMC/TTE+1% LiDFOB(FEC/DMC/TTE体积比为1∶2∶9,标记为F-3TTE)。其中F-3TTE的配制完成后部分锂盐析出,因此被认为无法实际应用。

1.2 电池组装

1.2.1 扣式电池组装

本实验所使用富锂锰基正极Li1.2Ni0.13Co0.13Mn0.54O2(宁波富理,LRM-300)接收后未做任何处理。将LRM正极材料、导电添加剂(SP)、黏结剂(PVDF)按照8∶1∶1的质量比混合成浆后,均匀涂覆在铝箔上,置于鼓风干燥箱80 ℃干燥3 h后,裁切成直径为12 mm的小圆片,得到正极活性材料面载量约为5.6 mg/cm2的LRM极片。

扣式电池(科晶,CR2032)在氩气氛围的手套箱内中装配,水与氧含量均<0.1(μg/g)。以LRM极片为正极,厚度400 μm的金属锂箔为负极,并采用厚度20 μm的pp隔膜,电解液分别使用配制的FEC/TTE-1/TTE-2。线性扫描伏安法测试中同样如上装配扣式电池,只是以直径为14 mm的钢片为正极。

1.2.2 软包电池组装

将LRM正极材料、导电炭黑SP、碳纳米管CNTs、黏结剂PVDF按照97.012∶0.97∶0.078∶1.94的质量百分比均匀混合成浆,而后将浆料均匀双面涂敷在铝箔表面,置于鼓风干燥箱80 ℃干燥24 h后,获得正极活性材料单侧面载量约为14.2 mg/cm2的LRM极片。

电池在露点<35 ℃的干房中装配。以LRM极片为正极,金属锂极片为负极,电解液分别使用配制的FEC/TTE-1,装配成5085型软包电池。

1.3 测试与表征

线性扫描伏安法(上海辰华,CHI-660E)测试,扫描电压区间为3.0~5.5 V,扫描速度为1 mV/s。扣式电池使用深圳新威公司生产的CT-4008Tn-5V进行20 mA恒流充放电测试,电压区间为2.0~4.8 V。软包电池使用深圳新威公司生产的CT-4008-5V6A-S1-F进行恒流充放电测试,电压区间为2.0~4.8 V。

电解液的离子电导率,通过电导率仪(上海雷磁,DDS-307A)在室温25 ℃下测定。电解液与隔膜的接触角,使用接触角测量仪(上海艾飞思)拍摄图像后,采用三点法测量角度值。激光显微共焦拉曼光谱仪(Raman,Renishaw inVia reflex),采用波长为785 nm的激光激发,测试电解液中的特征分子键振动。通过X光电子能谱仪(XPS,PHI 5000 VersaProbe Ⅲ)分析电极表面元素构成及相对应的化学键信息。场发射电子显微镜(TEM,JEM-F200)被用于观察循环后正极表面形貌与晶体相的结构变化。使用X射线衍射(XRD,Bruker D8 ADVANCE A25)扫描循环前后的正极极片,测试以铜靶(CuKα)作为光源,波长为0.15406 nm,测试角度为10°~80°。负极表面形貌通过扫描电子显微镜(SEM,日立SU8100)进行表征。电池阻抗通过电化学阻抗测试设备(EIS,Zahner Zennium-XC),5 mA微扰和1 Hz~1 MHz频率区间模式进行测试。

2 结果与讨论

2.1 电解液特性测试分析

图1(a)、(b)采用Raman测试,验证TTE引入后对溶剂化结构的影响:其中O—C—O(730 cm-1)、C—C(908 cm-1)和C—O(917 cm-1)的拉曼峰对应溶剂分子与Li+弱配位的状态,而(C—O) n -Li+(933 cm-1)的拉曼振动对应溶剂分子与Li+强配位的状态;SSIP(PF6-)和CIP/AGG(PF6--Li+)分别根据锂盐阴离子PF6-与Li+弱配位和强配位状态划分[21-23]。相比电解液F-基,电解液F-TTE与F-2TTE中TTE的引入显著发挥促配位作用,与Li+弱配位的游离溶剂分子比例下降,这有助于降低溶剂分子反应性[15-16],与Li+强配位锂盐阴离子的CIP/AGG的比例提升。同时图1(c)对比不同溶剂组分的最高占据分子轨道(HOMO)能级,可知溶剂的抗氧化性强弱为DMC(-8.17 eV)<FEC(-8.71 eV)<TTE(-9.86 eV),表明TTE引入能提升溶剂组分抗氧化性[24]。为此对配制的不同电解液进行LSV测试[图1(d)],发现相比电解液F-基,电解液F-TTE与F-2TTE在高电压下的抗氧化性更强,能够在5.5 V下仍保持低的氧化分解电流。

图1

图1   电解液F-基、F-TTEF-2TTE:(a) 拉曼位移720760 cm1(b) 拉曼位移880980 cm1 的拉曼光谱;(c) 溶剂分子HOMO能级计算值:(d) LSV测试曲线(e) 电解液与隔膜的接触角和电解液离子电导率;(f) 倍率性能

Fig. 1   Properties of electrolyte F-based, F-TTE and F-2TTE: Raman spectra (a) From 680 to 780 cm1,(b) From 880 to 980 cm1; (c) Calculated HOMO levels of solvent molecule; (d) LSV curves; (e) Contact angle between electrolytes and separate and ionic conductivity of electrolytes; (f) Rate performance


同时图1(e)所示为测量的电解液与隔膜的接触角,分别为F-基(43.26°)>F-TTE(9.11°)>F-2TTE(8.47°),表明TTE引入后电解液的浸润性提升,有助于电解液的实际应用[25],而随着TTE的比例增加,电解液的离子电导率下降,F-基(10.08 mS/cm)>F-TTE(5.17 mS/cm)>F-2TTE(3.06 mS/cm),不利于电解液的动力学性能。图1(f)通过组装LRM||Li的半电池在0.1~1 C(1 C=300 mA/g)范围进行倍率测试,其中应用电解液F-基和F-TTE的电池展现出接近的倍率性能,而应用电解液F-2TTE的电池放电比容量显著受到影响。

2.2 扣式电池循环性能

为考察TTE引入电解液对LRM正极电化学性能的影响,组装LRM||Li扣式电池应用电解液F-基、F-TTE、F-2TTE,首次以0.1 C(1 C=300 mA/g)活化正极,而后以0.5 C进行长循环测试。LRM正极(Li1.2Ni0.13Co0.13Mn0.54O2)被认为由LiMO2(M=Ni、Co、Mn)与Li2MnO3两相混合构成,如图2(a)电池首次充电曲线所示,4 V的充电斜坡对应LiMO2中过渡金属元素的氧化,4.5 V的充电平台对应Li2MnO3相中氧元素的氧化,而放电曲线对应Li+嵌入正极两相中的耦合过程[6]图2(b)中0.5 C循环时,使用电解液F-基的电池初始放电比容量为262.8 mAh/g,循环至200次后容量衰减为初始容量的81.2%;使用电解液F-TTE的电池初始放电比容量为261.8 mAh/g,循环400次后容量保持率为83.9%;使用电解液F-2TTE的电池初始放电比容量为256.8 mAh/g,循环200次后容量保持率为72.4%。表明向F-基电解液中引入适量的TTE能够提升LRM正极的循环稳定性,并筛选出引入与原溶剂等体积的TTE配制成电解液F-TTE是适宜的。

图2

图2   应用电解液F-基、F-TTEF-2TTELRM||Li电池的循环性能:(a) 0.1 C充放电曲线;(b) 循环中的放电比容量;(电池循环中的充放电曲线(c) F-基电解液;(d) F-TTE电解液

Fig. 2   Cyclic performance of LRM||Li battery using electrolyte F-based, F-TTE and F-2TTE: (a) Charge-discharge curves at 0.1 C, (b) Discharge specific capacity in the cycling; Charge-discharge curves of battery using (c) F-based electrolyte, (d) F-TTE electrolyte


图2(c)和(d)进一步对比了应用电解液F-基与F-TTE的LRM||Li电池循环中的充放电曲线,从第2次循环至第200次循环,放电中值电压分别从3.48 V下降至2.93 V(F-基)和从3.49 V下降至2.99 V(F-TTE),呈现典型的LRM正极电压衰减[6],而F-TTE未能相比F-基显著改变这个电压衰减的趋势。不过相比F-基电池,F-TTE电池循环中的充放电曲线贴合更紧密,呈现更小的极化而表现出循环的相对稳定性[26]

表1对比了目前报道的充电截止电压在4.6 V以上的LRM正极对金属锂电池,应用不同新型电解液的电化学循环性能。应用氟化溶剂[27-28]、砜基添加剂[7]、磷酸盐与亚磷酸盐添加剂[29]、硼酸盐添加剂[3]的新型电解液,被证实以不同的反应机理和不同的分解组分[30],有效提升电池的循环性能。其中Liu等[28]还应用磷酸三甲酯TMP和TTE取代碳酸酯类溶剂,开发电解液1 mol/L LiPF6 TMP/TTE,应用在Li1.2Mn0.6Ni0.2O2/Li电池中利用TMP消除正极活性氧与电解液的副反应,提升电池性能。本文向F-基中引入TTE形成F-TTE的电解液配方,提升了Li1.2Ni0.13Co0.13Mn0.54O2/Li电池的循环稳定性,在0.5 C下循环400次后容量保持率达83%,在此表现为已知的最佳循环性能。本文认为通过减少电池循环中电解液的不稳定性带来的干扰,能够更好地理解正极材料在循环中衰减的来源,可推动对富锂锰基正极的研究与应用。

表1   基于不同新型电解液的富锂锰基正极金属锂电池的电化学性能

Table 1  Electrochemical performance of lithium-manganese-rich cathode lithiummetal batteries based on different novel electrolytes

正极材料电解液循环性能

Li1.16Mn0.63Ni0.21O2 [27]

Li1.144Mn0.544Ni0.136Co0.136O2[28]

Li1.2Mn0.54Ni0.13Co0.13O2[7]

Li1.2Mn0.54Ni0.13Co0.13O2[31]

Li1.2Mn0.54Ni0.13Co0.13O2[32]

Li1.17Mn0.5Ni0.17Co0.17O2[33]

Li1.16Mn0.54Ni0.2Co0.1O2[34]

Li1.2Mn0.54Ni0.13Co0.13O2[29]

Li1.17Mn0.5Ni0.17Co0.17O2[3]

Li1.2Mn0.6Ni0.2O2[5]

Li1.2Mn0.56Ni0.16Co0.08O2[35]

Li1.2Mn0.54Ni0.13Co0.13O2[36]

Li1.2Mn0.54Ni0.13Co0.13O2[37]

Li1.2Mn0.55Ni0.15Co0.1O2[38]

Li1.2Mn0.54Ni0.13Co0.13O2(本文)

1 mol/L LiPF6 EC/DMC/DEC+2% FEC

1 mol/L LiPF6TMP/TTE

1 mol/L LiPF6 EC/EMC/DEC+1% PVS

1 mol/L LiPF6 EC/DMC+3% TEP

1 mol/L LiPF6 EC/DEC+1% TMP

1.3 mol/L LiPF6 EC/EMC/DMC+0.5% TMSP

1 mol/L LiPF6 EC/EMC+0.2% TPPi

1 mol/L LiPF6 EC/EMC/DMC+0.5% TMSPi

1 mol/L LiPF6 EC/EMC/DMC+1% LiDFOB

1.2 mol/L LiPF6 EC/EMC+2% LiBOB

1 mol/L LiPF6 EC/DMC+0.5% TMSB

1 mol/L LiPF6 EC/EMC/DEC+2% TMB

1 mol/L LiPF6 EC/EMC/DEC+3% TPB

1 mol/L LiPF6 EC/EMC/DEC+1% BTMSC

1 mol/L LiPF6 FEC/DMC/TTE+1% LiDFOB

0.5 C-100 cycles@92%

0.03 C-100 cycles@96%

0.5 C-240 cycles@80%

0.3 C-110 cycles@82%

0.5 C-100 cycles@81%

0.5 C-100 cycles@77%

0.5 C-90 cycles@91%

0.5 C-300 cycles@74%

0.5 C-200 cycles@81%

0.2 C-300 cycles@92%

0.5 C-200 cycles@74%

0.5 C-300 cycles@84%

0.5 C-250 cycles@78%

0.5 C-200 cycles@72%

0.5 C-400 cycles@83%

新窗口打开| 下载CSV


2.3 LRM正极界面组分分析

事实上LRM正极循环中的界面稳定性深刻影响着其循环稳定性,为此应用X射线光电子能谱(XPS)对循环100次后的LRM正极表面成膜组分进行表征,对应C1s,O1s,F1s元素进行区分得到如图3(a)~(c)结果。从图3(a)可知,C1s光谱可对应于导电碳(约284.8 eV的C—C/C—H特征峰),碳酸盐(约286.5 eV的C—O,约289.0 eV的C=O特征峰),黏结剂PVDF(约291.0 eV的C—F特征峰)的组分。对于图3(b)中的O1s光谱对应的组分,主要是碳酸盐(532 eV的C—O特征峰和534 eV的C=O特征峰)组分[39]图3(c)中F1s光谱对应的组分中,包括溶剂分解产物(约685.5 eV的Li-F特征峰),磷酸盐分解产物(约685.5 eV的Li-F特征峰,688.0 eV的P—F特征峰)[40-41]。可知电解液F-基与电解液F-TTE在正极分解产物的种类是一致的,而C与O元素,来源于电解液溶剂的分解;F元素的峰强主要来源于以LiF、磷酸盐分解产物为代表的锂盐阴离子的无机分解产物。据此图3(d)以不同元素特征峰的积分面积定量划分成膜组分的元素相对占比,对比可知电解液F-TTE分解产物呈现相对较低的C与O元素比例和相对较高的F元素比例,这表明F-TTE中CIP/AGG溶剂化结构比例提升,能够促进锂盐阴离子更多地参与界面成膜。而更多的LiF、磷酸盐分解产物等含氟无机组分参与构成正极界面CEI,已被文献报道有利于抑制循环中持续的界面副反应,提升正极界面稳定性[542-43]

图3

图3   F-基与F-TTE电解液中循环100次后LRM正极XPS数据:(a) C1s(b) O1s(c) F1s(d) 不同元素的定量分析

Fig. 3   XPS data of LRM cathode after 100 cycles in F-based and F-TTE electrolyte:(a) C1s; (b) O1s; (c) F1s; (d) Quantitative analysis of different elements


2.4 循环后LRM正极结构变化

进一步使用场发射电子显微镜(TEM)对循环200次后的正极材料表面的CEI膜和晶体相结构进行观测。如图4(a)所示,在电解液F-基中循环后的正极界面形成不均匀的CEI层,厚度可达17 nm,表明界面处大量副反应产物堆积,电解液严重侵蚀正极[24]。对TEM表征结果中正极晶格对应的傅里叶快速转换(FFT)的衍射光斑分析,不仅存在晶面间距为0.24 nm对应着Li2MnO3相层状结构的(101)晶面,而且存在晶面间距0.21 nm对应于尖晶石相LiMn2O4(400)晶面的光斑[44-45],表现出正极界面层状结构的衰退。图4(b)在电解液F-TTE中循环后的正极表面,CEI相对均匀,厚度相对较薄为5 nm,证实富含氟元素的CEI能够减少界面副反应。对应的FFT衍射光斑,经过测量可知晶面间距为0.24 nm与0.31 nm,对应着Li2MnO3相的(101)与(022)层状结构晶面[4446],表现出正极界面层状结构的稳定性。

图4

图4   LRM 正极循环200次后的TEM图像和对应的FFT(a) F-基;(b) F-TTE(c) 循环200次前后正极的XRD数据;(d)XRD数据计算的结构参数 I(003)/I(104)R

Fig. 4   TEM images and the corresponding FFT for LRM after 200 cycles in (a) F-based; (b) F-TTE; (c) The XRD data of the cathode before and after 200 cycles; (d) Structural parameters I(003)/I(104) and R value calculated by XRD data


图4(c)是使用非原位X射线衍射(XRD)对循环前以及循环200次后的正极极片进行扫描后的数据。循环前极片的衍射峰均很好地指向典型的α-NaFeO2层状结构[47-48],循环后极片层状结构的衍射峰都能保留。其中,使用F-基电解液循环后的正极,虽然图4(a)中的尖晶石相结构不至长程有序出现特征峰,但其(003)晶面的衍射峰峰强相对退化。如图4(d)所示,进一步根据XRD测试结果,计算与离子混合程度相关的I(003)/I(104)比值(I(003)/I(104)越大,镍离子在Li层中无序位点的比例越小)[49],对应正极在循环前、F-基中循环后、F-TTE中循环后的值分别为1.73、1.14、1.67,并且计算与材料的六方有序性相关的R值[R值由I(006)+I(012)/I(101)得到,其值越小,六方有序性越高][49],对应正极在循环前、F-基中循环后、F-TTE中循环后的R值分别为0.29、0.50、0.44。这同样表明使用F-TTE电解液循环后,正极材料层状结构保留完好,离子混排程度低,结构有序性高。

2.5 金属锂负极影响

通过SEM表征电池循环200次后的负极金属锂形貌,图5(a)与图5(d)中对应F-基和F-TTE电池的负极主体结构均稳定,只是F-TTE电池负极的表面相对更平整。图5(b)和(c)显示,F-基电池负极受电解液的剧烈腐蚀而在表面产生裂缝,并且存在大量的死锂与锂枝晶。因此,由于电解液的消耗和副反应产物的积累,F-基电池循环中阻抗[图5(g)、(h)、(i)]迅速增加,阻碍了Li+的输运导致电池极化增大[图2(c)]不利于容量发挥[50];而图5(e)和(f)中,F-TTE电池负极表面相对完整,锂的生长形状更紧密且平滑,这表明循环中F-TTE与金属锂负极的界面稳定性更高,表现出相对低的电池阻抗[图5(g)、(h)、(i)],有利于电池在循环中表现出高度可逆的容量。

图5

图5   应用(a)(c) F-基电解液,(d)(f) F-TTE电解液循环200次后电池中金属锂的形貌;电池循环(g)1次,(h)100次,(i)200次的阻抗Nyquist

Fig. 5   Morphology of lithium metal in batteries with F-based electrolyte (a)(c) and F-TTE electrolyte cycling for 200 cycles (d)(f); Nyquist impedance diagram of battery after (g) 1st cycle, (h) 100th cycle, (i) 200th cycle


2.6 软包电池的电化学性能

为验证F-TTE的实用性,如表2我们设计了容量为1.25 Ah的金属锂软包电池,依据电池尺寸命名为5085软包,应用F-基和F-TTE两种电解液进行电化学测试。

表2   软包电池特征参数

Table 2  Pouch Cell characteristic parameters

组成特征/单位参数
正极正极材料Li1.2Mn0.54Ni0.13Co0.13O2
放电比容量/(mAh/g)300
双面涂布厚度/(Al箔6 μm)(μm)200
尺寸/mm365.0×45.0×0.2
面载量/(mAh/cm2)4.0
正极片层数5
负极负极材料金属锂
厚度/μm120
负极片层数6

隔膜

电解液

20 μm PP隔膜
1 mol/L LiPF6FEC/DMC/TTE+1% LiDFOB
电解液用量/g3.0
电池尺寸/mm385.0×50.0×2.4
质量/g11.7
N/P3.0
容量/Ah1.25
充放电电压区间/V2.0~4.8
能量密度/(Wh/kg)370

新窗口打开| 下载CSV


5085软包以0.04 C电流活化一周后,在0.08 C的电流下进行充放电循环测试。在图6(a)展示的长循环测试结果中,使用F-基电解液的软包电池在循环9次后容量迅速下降至初始容量的80%,而使用F-TTE电解液的软包电池能循环45次,循环寿命显著延长,这与扣式电池的测试结果一致[图2(b)]。其中在首次0.04 C活化时,两款电池的放电比容量均为1.24 Ah接近设计容量1.25 Ah,此时如图6(b)所示电池的能量密度计算为370 Wh/kg。当循环电流提升至0.08 C时,应用F-TTE电解液的电池,虽然因为离子电导率低[图1(e)]展现出更大极化[图6(c)和(d)],相对F-基电池第二次的放电容量和能量密度稍低,但得益于F-TTE与正、负极的界面稳定性,能够减缓电池极化增长的趋势[图6(c)和(d)],有助于电池在长循环中提供更为可逆的容量和能量密度。

图6

图6   软包电池循环性能:(a) 在不同电解液的循环性能;(b) 软包电池能量密度的曲线;(c) 电解液F-基充放电曲线;(d) 电解液F-TTE充放电曲线

Fig. 6   Pouch cell cycling test: (a) Cycling performance in different electrolytes; (b) Curves of pouch cell energy density; (c) Charge-discharge curves of electrolyte F-based; (d) Charge-discharge curves of electrolyte F-TTE


3 结论

通过向LiPF6基电解液引入适量的促配位溶剂TTE开发的新型电解液1 mol/L LiPF6 FEC/DMC/TTE+1% LiDFOB(FEC/DMC/TTE体积比为1∶2∶3),溶剂化结构中更多锂盐阴离子与Li+配位的CIP/AGG的比例提升,新型电解液在5.5 V下有低的氧化分解电流,并且能在正极界面形成富含氟元素的CEI,提升正极-电解液界面和正极结构的稳定性,与负极金属锂的界面的稳定性高,有利于减缓电池阻抗增加,进而稳定电池循环性能,相比已报道的应用新型电解液的LRM正极对金属锂电池呈现出更好的循环性能,0.5 C下以99.8%的充放电效率循环400次后容量保持率高达83.9%。此外,组装1.25 Ah的LRM正极金属锂软包电池,应用新型电解液在0.04 C下能够提供370 Wh/kg的高质量能量密度,并且在0.08 C下循环45次容量保持率为80%,相比F-基电解液循环9次后容量迅速下降至初始容量的80%,电池寿命大幅延长。由此说明,通过开发与LRM正极兼容的电解液,能够促进LRM正极实际应用。

参考文献

WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614.

[本文引用: 1]

LU Z H, MACNEIL D D, DAHN J R. Layered cathode materials Li[NixLi(1/3–2 x/3)Mn(2/3– x/3)]O2 for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2001, 4(11): A191.

[本文引用: 1]

CHA J, HAN J G, HWANG J, et al. Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2017, 357: 97-106.

[本文引用: 3]

FAN X L, WANG C S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486-10566.

[本文引用: 1]

ZHANG B D, WANG L L, WANG X T, et al. Sustained releasing superoxo scavenger for tailoring the electrode-electrolyte interface on Li-rich cathode[J]. Energy Storage Materials, 2022, 53: 492-504.

[本文引用: 3]

LI Y X, LI W K, SHIMIZU R, et al. Elucidating the effect of borate additive in high-voltage electrolyte for Li-rich layered oxide materials[J]. Advanced Energy Materials, 2022, 12(11): 2103033.

[本文引用: 4]

ZHENG X W, WANG X S, CAI X, et al. Constructing a protective interface film on layered lithium-rich cathode using an electrolyte additive with special molecule structure[J]. ACS Applied Materials & Interfaces, 2016, 8(44): 30116-30125.

[本文引用: 3]

WANG H P, LI X, LI F, et al. Formation and modification of cathode electrolyte interphase: A mini review[J]. Electrochemistry Communications, 2021, 122: 106870.

[本文引用: 1]

KÖPS L, KRETH F A, LEISTENSCHNEIDER D, et al. Improving the stability of supercapacitors at high voltages and high temperatures by the implementation of ethyl isopropyl sulfone as electrolyte solvent[J]. Advanced Energy Materials, 2023, 13(5): 2203821.

[本文引用: 1]

GMITTER A J, PLITZ I, AMATUCCI G G. High concentration dinitrile, 3-alkoxypropionitrile, and linear carbonate electrolytes enabled by vinylene and monofluoroethylene carbonate additives[J]. Journal of the Electrochemical Society, 2012, 159(4): A370-A379.

[本文引用: 1]

ABU-LEBDEH Y, DAVIDSON I. New electrolytes based on glutaronitrile for high energy/power Li-ion batteries[J]. Journal of Power Sources, 2009, 189(1): 576-579.

[本文引用: 1]

CUI C Y, FAN X L, ZHOU X Q, et al. Structure and interface design enable stable Li-rich cathode[J]. Journal of the American Chemical Society, 2020, 142(19): 8918-8927.

[本文引用: 1]

FAN X L, CHEN L, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8): 715-722.

[本文引用: 1]

毛舒岚, 武倩, 王卓雅, 等. 三元NCM锂离子电池高电压电解质的研究进展[J]. 储能科学与技术, 2020, 9(2): 538-550.

[本文引用: 1]

MAO S L, WU Q, WANG Z Y, et al. Research progress of high voltage electrolyte for ternary NCM lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 538-550.

[本文引用: 1]

WU Z C, LI R H, ZHANG S Q, et al. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries[J]. Chem, 2023, 9(3): 650-664.

[本文引用: 2]

ZHANG Y R, KATAYAMA Y, TATARA R, et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy[J]. Energy & Environmental Science, 2020, 13(1): 183-199.

[本文引用: 2]

ZHENG J M, LOCHALA J A, KWOK A, et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Advanced Science, 2017, 4(8): 1700032.

[本文引用: 1]

CAO Z Y, HASHINOKUCHI M, DOI T, et al. Improved cycle performance of LiNi0.8Co0.1Mn0.1O2 positive electrode material in highly concentrated LiBF4/DMC[J]. Journal of the Electrochemical Society, 2019, 166(2): A82-A88.

[本文引用: 1]

DOI T, MASUHARA R, HASHINOKUCHI M, et al. Concentrated LiPF6/PC electrolyte solutions for 5-V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries[J]. Electrochimica Acta, 2016, 209: 219-224.

[本文引用: 1]

REN X D, CHEN S R, LEE H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries[J]. Chem, 2018, 4(8): 1877-1892.

[本文引用: 1]

MING J, CAO Z, LI Q, et al. Molecular-scale interfacial model for predicting electrode performance in rechargeable batteries[J]. ACS Energy Letters, 2019, 4(7): 1584-1593.

[本文引用: 1]

REN F H, LI Z D, CHEN J H, et al. Solvent-diluent interaction-mediated solvation structure of localized high-concentration electrolytes[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4211-4219.

WANG X S, WANG S W, WANG H R, et al. Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(52): e2007945.

[本文引用: 1]

ZHAO J T, ZHANG X, LIANG Y, et al. Interphase engineering by electrolyte additives for lithium-rich layered oxides: Advances and perspectives[J]. ACS Energy Letters, 2021, 6(7): 2552-2564.

[本文引用: 2]

CHEN L, NIAN Q S, RUAN D G, et al. High-safety and high-efficiency electrolyte design for 4.6 V-class lithium-ion batteries with a non-solvating flame-retardant[J]. Chemical Science, 2022, 14(5): 1184-1193.

[本文引用: 1]

詹元杰, 武怿达, 马晓威, 等. 基于碳酸酯基电解液的4.5V电池[J]. 储能科学与技术, 2020, 9(2): 319-330.

[本文引用: 1]

ZHAN Y J, WU Y D, MA X W, et al. 4.5 V Li-ion battery with a carbonate ester-based electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 319-330.

[本文引用: 1]

LI Y, LIAN F, MA L L, et al. Fluoroethylene carbonate as electrolyte additive for improving the electrochemical performances of high-capacity Li1.16[Mn0.75Ni0.25]0.84O2 material[J]. Electrochimica Acta, 2015, 168: 261-270.

[本文引用: 2]

LIU Z Z, LIU Z S, LI K H, et al. Exploring trimethyl-phosphate-based electrolytes without a carbonyl group for Li-rich layered oxide positive electrodes in lithium-ion batteries[J]. The Journal of Physical Chemistry Letters, 2022, 13(48): 11307-11316.

[本文引用: 3]

ZHU Y M, LUO X Y, XU M Q, et al. Failure mechanism of layered lithium-rich oxide/graphite cell and its solution by using electrolyte additive[J]. Journal of Power Sources, 2016, 317: 65-73.

[本文引用: 2]

LI L S, WANG D M, XU G J, et al. Recent progress on electrolyte functional additives for protection of nickel-rich layered oxide cathode materials[J]. Journal of Energy Chemistry, 2022, 65: 280-292.

[本文引用: 1]

TU W Q, XIA P, ZHENG X W, et al. Insight into the interaction between layered lithium-rich oxide and additive-containing electrolyte[J]. Journal of Power Sources, 2017, 341: 348-356.

[本文引用: 1]

LI Z D, ZHANG Y C, XIANG H F, et al. Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2013, 240: 471-475.

[本文引用: 1]

HAN J G, LEE S J, LEE J, et al. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8319-8329.

[本文引用: 1]

ZHOU Z X, MA Y L, WANG L, et al. Triphenyl phosphite as an electrolyte additive to improve the cyclic stability of lithium-rich layered oxide cathode for lithium-ion batteries[J]. Electrochimica Acta, 2016, 216: 44-50.

[本文引用: 1]

LI J H, XING L D, ZHANG R Q, et al. Tris(trimethylsilyl)borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte[J]. Journal of Power Sources, 2015, 285: 360-366.

[本文引用: 1]

LI J H, XING L D, CHEN J W, et al. Improving high voltage interfacial and structural stability of layered lithium-rich oxide cathode by using a boracic electrolyte additive[J]. Journal of the Electrochemical Society, 2016, 163(10): A2258-A2264.

[本文引用: 1]

LI J H, XING L D, WANG Z S, et al. Insight into the capacity fading of layered lithium-rich oxides and its suppression via a film-forming electrolyte additive[J]. RSC Advances, 2018, 8(45): 25794-25801.

[本文引用: 1]

LAN J L, ZHENG Q F, ZHOU H B, et al. Stabilizing a high-voltage lithium-rich layered oxide cathode with a novel electrolyte additive[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 28841-28850.

[本文引用: 1]

LIN S S, ZHAO J B. Functional electrolyte of fluorinated ether and ester for stabilizing both 4.5 V LiCoO2 cathode and lithium metal anode[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8316-8323.

[本文引用: 1]

WANG Y, ZHANG Y J, WANG S, et al. Ultrafast charging and stable cycling dual‐ion batteries enabled via an artificial cathode-electrolyte interface[J]. Advanced Functional Materials, 2021, 31(29): doi: 10.1002/adfm 202102360.

[本文引用: 1]

张建宇, 鲁理平, 于志辉, 宋进, 夏定国. P2-O3复合相富锂锰基正极材料的合成及性能研究[J]. 储能科学与技术, 2020, 9(2): 346-352.

[本文引用: 1]

ZHANG Jianyu, LU Liping, YU Zhihui, SONG Jin, XIA Dingguo. Synthesis and performance of P2-O3 composite-phase Li-rich Mn-based cathode materials[J]. Energy Storage Science and Technology, 2020, 9(2): 346-352.

[本文引用: 1]

TAN J, MATZ J, DONG P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16): doi: 10.1002/aenm.2100046.

[本文引用: 1]

SVEN K, STEFAN V W, STEPHAN R, et al. Understanding the outstanding high-voltage performance of NCM523||Graphite lithium ion cells after elimination of ethylene carbonate solvent from conventional electrolyte[J]. Advanced Energy Materials, 2021, 11(14): doi: 10.1002/aenm.202003738.

[本文引用: 1]

ZHOU M M, ZHAO J J, WANG X D, et al. Surface engineering for high stable lithium-rich Manganese-based cathode materials[J]. Chinese Chemical Letters, 2022: 107793.

[本文引用: 2]

ZHENG H F, ZHANG C Y, ZHANG Y G, et al. Manipulating the local electronic structure in Li-rich layered cathode towards superior electrochemical performance[J]. Advanced Functional Materials, 2021, 31(30): doi: 10.1002/adfm.2100783.

[本文引用: 1]

KAEWMALA S, LIMPHIRAT W, YORDSRI V, et al. Structural and electrochemical kinetic properties of 0.5Li2MnO3∙0.5LiCoO2 cathode materials with different Li2MnO3 domain sizes[J]. Scientific Reports, 2019, 9(1): 1-12.

[本文引用: 1]

LI Z, CAO S, XIE X, et al. Boosting electrochemical performance of lithium-rich Manganese-based cathode materials through a dual modification strategy with defect designing and interface engineering[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 53974-53985.

[本文引用: 1]

SHI S J, ZHANG S S, WU Z J, et al. Full microwave synthesis of advanced Li-rich Manganese based cathode material for lithium ion batteries[J]. Journal of Power Sources, 2017, 337: 82-91.

[本文引用: 1]

XIAO L F, YANG Y Y, ZHAO Y Q, et al. Synthesis and electrochemical properties of submicron LiNi0.8Co0.2O2 by a polymer-pyrolysis method[J]. Electrochimica Acta, 2008, 53(6): 3007-3012.

[本文引用: 2]

ZHAO W G, ZHENG J M, ZOU L F, et al. High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases[J]. Advanced Energy Materials, 2018, 8(19): 1800297.

[本文引用: 1]

/