Li-rich Mn-based cathode has the advantages of high specific capacity and low cost, which is expected to be the cathode material for the next generation of high-energy density Li-metal batteries. However, in practical applications, its charging cutoff voltage is 4.8 V versus Li, leading to the failure of electrolyte oxygenation decompositions, thereby deteriorating the interface between the cathode and electrolyte, making stable battery cycling challenging. A novel high-voltage electrolyte based on LiPF6 is developed, in which 1, 1, 2, 2-tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropylether (TTE) is used as a solvent to promote coordination. The experimental and characterization results show that many Li anions participate in the solvated structure of Li+ coordination after introducing appropriate TTE in the electrolyte, which can form a 5-nm-thick fluorine-rich cathode electrolyte interphase (CEI) on the surface of the cathode, stabilizing its interface and inhibiting the degradation of the cathode layer structure. The Li-rich Mn-based cathode Li-metal battery with the new electrolyte has an 83.9% capacity retention rate after 400 cycles with an average efficiency of 99.8% (0.5 C). The 1.25-Ah Li-rich Mn-based cathode Li-metal battery pouch cell can provide 370 Wh/kg mass-energy density at 0.04 C and still has an 80% capacity retention rate after 45 cycles at 0.08 C, showing a good application prospect. This study is helpful to promote the application of Li-rich Mn-based cathode and provide an experimental basis for the research and development of high energy density Li-metal batteries.
Keywords:lithium-rich manganese-based cathode
;
high voltage
;
electrolyte solvent
;
cathode-electrolyte interphase
;
layered structure
;
lithium metal pouch cell
然而,传统碳酸酯类电解液,在富锂锰基正极高充电截止电压(4.8 V vs Li/Li+)下会发生剧烈的界面副反应,影响电池的循环性能。Cha等[3]报道的Li1.17Ni0.17Mn0.5Co0.17O2/Li半电池,应用传统碳酸酯类溶剂的电解液在0.5 C下恒流充放电,循环70次后电池容量跳水,表现出较差的电化学循环性能。Fan等[4]报道溶剂碳酸乙烯酯(EC)自4.3 V的对锂电位开始持续氧化分解;Zhang等[5]报道,除了高电压的氧化,富锂锰基正极的亲核超氧基团会攻击碳酸酯溶剂,加剧电解液的分解;Li等[6]还发现电解液分解产物中的HF会溶出富锂锰基正极中的过渡金属元素,破坏正极结构的稳定性。
一种广泛报道的策略,是通过向电解液中加入添加剂的方式提升电池的循环性能。Zheng等[7]引入1%的苯基乙烯基砜,它有更高的反应活性,在电解液中先于其余组分被氧化,并且在正极表面原位形成具有保护性的CEI稳定电池循环。Li等[6]使用添加剂LiBOB,消除电解液分解产物HF,提升电池的循环性能。然而,CEI随着循环的进行会经历溶解与重构,伴随着高反应活性的添加剂在正极表面持续反应而被耗尽,导致添加剂难以持续保护电解液组分[8]。降低电解液中溶剂组分的反应性是另一种可行的策略,最高占据分子轨道(Highest occupied molecular orbital,HOMO)能级低的砜类溶剂[9]、腈类溶剂[10-11]和氟化溶剂[12-13]等被用作电解液的助溶剂[14],能够减少溶剂分解提升高电压正极的长循环性能;高锂盐浓度电解液形成的更多锂盐阴离子参与配位的接触离子对(Contact ion pairs,CIP)和聚集体(Aggregate,AGG)的溶剂化结构,与常规锂盐浓度电解液的溶剂分离离子对(solvent separates ion pairs,SSIP)溶剂化结构相比,不仅能促进有限溶剂与Li+高度配位降低溶剂分子的反应性[15-16],Zheng等[17]还证实形成CIP和AGG的溶剂化结构可以促进锂盐阴离子参与成膜,有助于提升电极-电解液中间相的无机组分从而稳定界面。只是高锂盐浓度的电解液,通常具有较大黏度[18-19],不利于实际应用。Ken等[20]向高浓度的砜基电解液中引入低黏度的TTE开发的局部高浓电解液(localized high-concentration electrolyte,LHCE),不仅降低了电解液整体的粘度,非溶剂化的TTE引入后还能保留浓缩电解液的特质,能够实现高电压正极的循环稳定性。只是在设计LHCE配方时,通常需要一种高溶解度的锂盐如LiTFSI、LiFSI,而排除了常见的锂盐LiPF6、LiClO4、LiBOB等的应用。
Fig. 1
Properties of electrolyte F-based, F-TTE and F-2TTE: Raman spectra (a) From 680 to 780 cm–1,(b) From 880 to 980 cm–1; (c) Calculated HOMO levels of solvent molecule; (d) LSV curves; (e) Contact angle between electrolytes and separate and ionic conductivity of electrolytes; (f) Rate performance
Fig. 2
Cyclic performance of LRM||Li battery using electrolyte F-based, F-TTE and F-2TTE: (a) Charge-discharge curves at 0.1 C, (b) Discharge specific capacity in the cycling; Charge-discharge curves of battery using (c) F-based electrolyte, (d) F-TTE electrolyte
Fig. 3
XPS data of LRM cathode after 100 cycles in F-based and F-TTE electrolyte:(a) C1s; (b) O1s; (c) F1s; (d) Quantitative analysis of different elements
图4
LRM 正极循环200次后的TEM图像和对应的FFT图(a) F-基;(b) F-TTE;(c) 循环200次前后正极的XRD数据;(d) 据XRD数据计算的结构参数 I(003)/I(104)和 R 值
Fig. 4
TEM images and the corresponding FFT for LRM after 200 cycles in (a) F-based; (b) F-TTE; (c) The XRD data of the cathode before and after 200 cycles; (d) Structural parameters I(003)/I(104) and R value calculated by XRD data
Fig. 5
Morphology of lithium metal in batteries with F-based electrolyte (a)—(c) and F-TTE electrolyte cycling for 200 cycles (d)—(f); Nyquist impedance diagram of battery after (g) 1st cycle, (h) 100th cycle, (i) 200th cycle
WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614.
LU Z H, MACNEIL D D, DAHN J R. Layered cathode materials Li[NixLi(1/3–2x/3)Mn(2/3–x/3)]O2 for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2001, 4(11): A191.
CHA J, HAN J G, HWANG J, et al. Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2017, 357: 97-106.
FAN X L, WANG C S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486-10566.
ZHANG B D, WANG L L, WANG X T, et al. Sustained releasing superoxo scavenger for tailoring the electrode-electrolyte interface on Li-rich cathode[J]. Energy Storage Materials, 2022, 53: 492-504.
LI Y X, LI W K, SHIMIZU R, et al. Elucidating the effect of borate additive in high-voltage electrolyte for Li-rich layered oxide materials[J]. Advanced Energy Materials, 2022, 12(11): 2103033.
ZHENG X W, WANG X S, CAI X, et al. Constructing a protective interface film on layered lithium-rich cathode using an electrolyte additive with special molecule structure[J]. ACS Applied Materials & Interfaces, 2016, 8(44): 30116-30125.
WANG H P, LI X, LI F, et al. Formation and modification of cathode electrolyte interphase: A mini review[J]. Electrochemistry Communications, 2021, 122: 106870.
KÖPS L, KRETH F A, LEISTENSCHNEIDER D, et al. Improving the stability of supercapacitors at high voltages and high temperatures by the implementation of ethyl isopropyl sulfone as electrolyte solvent[J]. Advanced Energy Materials, 2023, 13(5): 2203821.
GMITTER A J, PLITZ I, AMATUCCI G G. High concentration dinitrile, 3-alkoxypropionitrile, and linear carbonate electrolytes enabled by vinylene and monofluoroethylene carbonate additives[J]. Journal of the Electrochemical Society, 2012, 159(4): A370-A379.
ABU-LEBDEH Y, DAVIDSON I. New electrolytes based on glutaronitrile for high energy/power Li-ion batteries[J]. Journal of Power Sources, 2009, 189(1): 576-579.
CUI C Y, FAN X L, ZHOU X Q, et al. Structure and interface design enable stable Li-rich cathode[J]. Journal of the American Chemical Society, 2020, 142(19): 8918-8927.
FAN X L, CHEN L, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8): 715-722.
MAO S L, WU Q, WANG Z Y, et al. Research progress of high voltage electrolyte for ternary NCM lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 538-550.
WU Z C, LI R H, ZHANG S Q, et al. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries[J]. Chem, 2023, 9(3): 650-664.
ZHANG Y R, KATAYAMA Y, TATARA R, et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy[J]. Energy & Environmental Science, 2020, 13(1): 183-199.
ZHENG J M, LOCHALA J A, KWOK A, et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Advanced Science, 2017, 4(8): 1700032.
CAO Z Y, HASHINOKUCHI M, DOI T, et al. Improved cycle performance of LiNi0.8Co0.1Mn0.1O2 positive electrode material in highly concentrated LiBF4/DMC[J]. Journal of the Electrochemical Society, 2019, 166(2): A82-A88.
DOI T, MASUHARA R, HASHINOKUCHI M, et al. Concentrated LiPF6/PC electrolyte solutions for 5-V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries[J]. Electrochimica Acta, 2016, 209: 219-224.
REN X D, CHEN S R, LEE H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries[J]. Chem, 2018, 4(8): 1877-1892.
MING J, CAO Z, LI Q, et al. Molecular-scale interfacial model for predicting electrode performance in rechargeable batteries[J]. ACS Energy Letters, 2019, 4(7): 1584-1593.
REN F H, LI Z D, CHEN J H, et al. Solvent-diluent interaction-mediated solvation structure of localized high-concentration electrolytes[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4211-4219.
WANG X S, WANG S W, WANG H R, et al. Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(52): e2007945.
ZHAO J T, ZHANG X, LIANG Y, et al. Interphase engineering by electrolyte additives for lithium-rich layered oxides: Advances and perspectives[J]. ACS Energy Letters, 2021, 6(7): 2552-2564.
CHEN L, NIAN Q S, RUAN D G, et al. High-safety and high-efficiency electrolyte design for 4.6 V-class lithium-ion batteries with a non-solvating flame-retardant[J]. Chemical Science, 2022, 14(5): 1184-1193.
ZHAN Y J, WU Y D, MA X W, et al. 4.5 V Li-ion battery with a carbonate ester-based electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 319-330.
LI Y, LIAN F, MA L L, et al. Fluoroethylene carbonate as electrolyte additive for improving the electrochemical performances of high-capacity Li1.16[Mn0.75Ni0.25]0.84O2 material[J]. Electrochimica Acta, 2015, 168: 261-270.
LIU Z Z, LIU Z S, LI K H, et al. Exploring trimethyl-phosphate-based electrolytes without a carbonyl group for Li-rich layered oxide positive electrodes in lithium-ion batteries[J]. The Journal of Physical Chemistry Letters, 2022, 13(48): 11307-11316.
ZHU Y M, LUO X Y, XU M Q, et al. Failure mechanism of layered lithium-rich oxide/graphite cell and its solution by using electrolyte additive[J]. Journal of Power Sources, 2016, 317: 65-73.
LI L S, WANG D M, XU G J, et al. Recent progress on electrolyte functional additives for protection of nickel-rich layered oxide cathode materials[J]. Journal of Energy Chemistry, 2022, 65: 280-292.
TU W Q, XIA P, ZHENG X W, et al. Insight into the interaction between layered lithium-rich oxide and additive-containing electrolyte[J]. Journal of Power Sources, 2017, 341: 348-356.
LI Z D, ZHANG Y C, XIANG H F, et al. Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2013, 240: 471-475.
HAN J G, LEE S J, LEE J, et al. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8319-8329.
ZHOU Z X, MA Y L, WANG L, et al. Triphenyl phosphite as an electrolyte additive to improve the cyclic stability of lithium-rich layered oxide cathode for lithium-ion batteries[J]. Electrochimica Acta, 2016, 216: 44-50.
LI J H, XING L D, ZHANG R Q, et al. Tris(trimethylsilyl)borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte[J]. Journal of Power Sources, 2015, 285: 360-366.
LI J H, XING L D, CHEN J W, et al. Improving high voltage interfacial and structural stability of layered lithium-rich oxide cathode by using a boracic electrolyte additive[J]. Journal of the Electrochemical Society, 2016, 163(10): A2258-A2264.
LI J H, XING L D, WANG Z S, et al. Insight into the capacity fading of layered lithium-rich oxides and its suppression via a film-forming electrolyte additive[J]. RSC Advances, 2018, 8(45): 25794-25801.
LIN S S, ZHAO J B. Functional electrolyte of fluorinated ether and ester for stabilizing both 4.5 V LiCoO2 cathode and lithium metal anode[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8316-8323.
WANG Y, ZHANG Y J, WANG S, et al. Ultrafast charging and stable cycling dual‐ion batteries enabled via an artificial cathode-electrolyte interface[J]. Advanced Functional Materials, 2021, 31(29): doi: 10.1002/adfm 202102360.
ZHANG Jianyu, LU Liping, YU Zhihui, SONG Jin, XIA Dingguo. Synthesis and performance of P2-O3 composite-phase Li-rich Mn-based cathode materials[J]. Energy Storage Science and Technology, 2020, 9(2): 346-352.
TAN J, MATZ J, DONG P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16): doi: 10.1002/aenm.2100046.
SVEN K, STEFAN V W, STEPHAN R, et al. Understanding the outstanding high-voltage performance of NCM523||Graphite lithium ion cells after elimination of ethylene carbonate solvent from conventional electrolyte[J]. Advanced Energy Materials, 2021, 11(14): doi: 10.1002/aenm.202003738.
ZHOU M M, ZHAO J J, WANG X D, et al. Surface engineering for high stable lithium-rich Manganese-based cathode materials[J]. Chinese Chemical Letters, 2022: 107793.
ZHENG H F, ZHANG C Y, ZHANG Y G, et al. Manipulating the local electronic structure in Li-rich layered cathode towards superior electrochemical performance[J]. Advanced Functional Materials, 2021, 31(30): doi: 10.1002/adfm.2100783.
LI Z, CAO S, XIE X, et al. Boosting electrochemical performance of lithium-rich Manganese-based cathode materials through a dual modification strategy with defect designing and interface engineering[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 53974-53985.
SHI S J, ZHANG S S, WU Z J, et al. Full microwave synthesis of advanced Li-rich Manganese based cathode material for lithium ion batteries[J]. Journal of Power Sources, 2017, 337: 82-91.
XIAO L F, YANG Y Y, ZHAO Y Q, et al. Synthesis and electrochemical properties of submicron LiNi0.8Co0.2O2 by a polymer-pyrolysis method[J]. Electrochimica Acta, 2008, 53(6): 3007-3012.
ZHAO W G, ZHENG J M, ZOU L F, et al. High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases[J]. Advanced Energy Materials, 2018, 8(19): 1800297.
... 然而,传统碳酸酯类电解液,在富锂锰基正极高充电截止电压(4.8 V vs Li/Li+)下会发生剧烈的界面副反应,影响电池的循环性能.Cha等[3]报道的Li1.17Ni0.17Mn0.5Co0.17O2/Li半电池,应用传统碳酸酯类溶剂的电解液在0.5 C下恒流充放电,循环70次后电池容量跳水,表现出较差的电化学循环性能.Fan等[4]报道溶剂碳酸乙烯酯(EC)自4.3 V的对锂电位开始持续氧化分解;Zhang等[5]报道,除了高电压的氧化,富锂锰基正极的亲核超氧基团会攻击碳酸酯溶剂,加剧电解液的分解;Li等[6]还发现电解液分解产物中的HF会溶出富锂锰基正极中的过渡金属元素,破坏正极结构的稳定性. ...
... 然而,传统碳酸酯类电解液,在富锂锰基正极高充电截止电压(4.8 V vs Li/Li+)下会发生剧烈的界面副反应,影响电池的循环性能.Cha等[3]报道的Li1.17Ni0.17Mn0.5Co0.17O2/Li半电池,应用传统碳酸酯类溶剂的电解液在0.5 C下恒流充放电,循环70次后电池容量跳水,表现出较差的电化学循环性能.Fan等[4]报道溶剂碳酸乙烯酯(EC)自4.3 V的对锂电位开始持续氧化分解;Zhang等[5]报道,除了高电压的氧化,富锂锰基正极的亲核超氧基团会攻击碳酸酯溶剂,加剧电解液的分解;Li等[6]还发现电解液分解产物中的HF会溶出富锂锰基正极中的过渡金属元素,破坏正极结构的稳定性. ...
3
... 然而,传统碳酸酯类电解液,在富锂锰基正极高充电截止电压(4.8 V vs Li/Li+)下会发生剧烈的界面副反应,影响电池的循环性能.Cha等[3]报道的Li1.17Ni0.17Mn0.5Co0.17O2/Li半电池,应用传统碳酸酯类溶剂的电解液在0.5 C下恒流充放电,循环70次后电池容量跳水,表现出较差的电化学循环性能.Fan等[4]报道溶剂碳酸乙烯酯(EC)自4.3 V的对锂电位开始持续氧化分解;Zhang等[5]报道,除了高电压的氧化,富锂锰基正极的亲核超氧基团会攻击碳酸酯溶剂,加剧电解液的分解;Li等[6]还发现电解液分解产物中的HF会溶出富锂锰基正极中的过渡金属元素,破坏正极结构的稳定性. ...
... 然而,传统碳酸酯类电解液,在富锂锰基正极高充电截止电压(4.8 V vs Li/Li+)下会发生剧烈的界面副反应,影响电池的循环性能.Cha等[3]报道的Li1.17Ni0.17Mn0.5Co0.17O2/Li半电池,应用传统碳酸酯类溶剂的电解液在0.5 C下恒流充放电,循环70次后电池容量跳水,表现出较差的电化学循环性能.Fan等[4]报道溶剂碳酸乙烯酯(EC)自4.3 V的对锂电位开始持续氧化分解;Zhang等[5]报道,除了高电压的氧化,富锂锰基正极的亲核超氧基团会攻击碳酸酯溶剂,加剧电解液的分解;Li等[6]还发现电解液分解产物中的HF会溶出富锂锰基正极中的过渡金属元素,破坏正极结构的稳定性. ...
... 一种广泛报道的策略,是通过向电解液中加入添加剂的方式提升电池的循环性能.Zheng等[7]引入1%的苯基乙烯基砜,它有更高的反应活性,在电解液中先于其余组分被氧化,并且在正极表面原位形成具有保护性的CEI稳定电池循环.Li等[6]使用添加剂LiBOB,消除电解液分解产物HF,提升电池的循环性能.然而,CEI随着循环的进行会经历溶解与重构,伴随着高反应活性的添加剂在正极表面持续反应而被耗尽,导致添加剂难以持续保护电解液组分[8].降低电解液中溶剂组分的反应性是另一种可行的策略,最高占据分子轨道(Highest occupied molecular orbital,HOMO)能级低的砜类溶剂[9]、腈类溶剂[10-11]和氟化溶剂[12-13]等被用作电解液的助溶剂[14],能够减少溶剂分解提升高电压正极的长循环性能;高锂盐浓度电解液形成的更多锂盐阴离子参与配位的接触离子对(Contact ion pairs,CIP)和聚集体(Aggregate,AGG)的溶剂化结构,与常规锂盐浓度电解液的溶剂分离离子对(solvent separates ion pairs,SSIP)溶剂化结构相比,不仅能促进有限溶剂与Li+高度配位降低溶剂分子的反应性[15-16],Zheng等[17]还证实形成CIP和AGG的溶剂化结构可以促进锂盐阴离子参与成膜,有助于提升电极-电解液中间相的无机组分从而稳定界面.只是高锂盐浓度的电解液,通常具有较大黏度[18-19],不利于实际应用.Ken等[20]向高浓度的砜基电解液中引入低黏度的TTE开发的局部高浓电解液(localized high-concentration electrolyte,LHCE),不仅降低了电解液整体的粘度,非溶剂化的TTE引入后还能保留浓缩电解液的特质,能够实现高电压正极的循环稳定性.只是在设计LHCE配方时,通常需要一种高溶解度的锂盐如LiTFSI、LiFSI,而排除了常见的锂盐LiPF6、LiClO4、LiBOB等的应用. ...