The proposal of carbon peaking and carbon neutrality goals has accelerated China's low-carbon energy transformation, leading to the rigorous promotion of the new energy vehicle industry. The power battery, as the core component of these vehicles, is about to face a massive retirement wave in the replacement process. However, the cascade utilization of power batteries could alleviate recycling pressure and environmental pollution while maximizing the full life cycle of the battery, which is crucial for low-carbon emissions, energy savings, and environmental protection. To further improve the green and sustainable development system of cascade utilization, this paper analyzes the current policies, standards, and application scenarios of echelon utilization. The study discusses the battery recycling mode, aging principle, detection, screening, capacity configuration, control principle, battery management system, and other technologies from the aspects of battery recycling and cascade utilization of the energy storage system. Ultimately, the paper presents the problems and challenges faced by the cascade utilization of decommissioned power batteries, and constructive suggestions are made for the breakthrough of industrial technology and the formation of an industrial system. This research could help the industrial layout of cascade utilization.
Keywords:retired power battery
;
battery recycling
;
cascade utilization
;
energy storage
YU Huiqun. Key technologies for retired power battery recovery and its cascade utilization in energy storage systems[J]. Energy Storage Science and Technology, 2023, 12(5): 1675-1685
退役动力电池从回收到最后实际应用,对其当前状态进行检测评估必不可少,深入了解动力电池老化原理是各项评估技术发展进步的基础。锂电池是当前市场上使用最广泛的电池之一,电池内部构成如图3所示,在其充放电过程中会发生一些不可逆的化学反应导致电池的老化,老化机理可分为三类:锂离子的损失(loss of lithium inventory,LLI)、活性材料的损失(loss of active material,LAM)以及内阻增加[24]。锂电池的工作原理是基于正极和负极活性材料的插层和脱层[25],因此锂离子以及活性材料的数量直接影响电池的容量。LAM主要由石墨剥落、金属溶解和颗粒断裂等引起[26];LLI主要由锂的沉积及固体电解质相界面膜(solid electrolyte interface,SEI)引起,首次充放电时锂离子会跟电解质和有机溶剂发生反应,在电极与电解液的接触面上生成SEI保护电池内部结构稳定[27],但会不可逆地消耗锂和电解质,导致电池性能衰退。
LI J L, LI Y X, LYU C, et al. Key technology and research status of cascaded utilization in decommissioned power battery[J]. Automation of Electric Power Systems, 2020, 44(13): 172-183.
TAN Z, FAN M S, ZHAO G J, et al. Analysis of national standard system for power battery echelon utilization[J]. Battery Bimonthly, 2022, 52(4): 443-446.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Recycling of traction battery used in electric vehicle—Dismantling specification: GB/T 33598—2017[S]. Beijing: Standards Press of China, 2017.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Recycling of traction battery used in electric vehicle—Test of residual capacity: GB/T 34015—2017[S]. Beijing: Standards Press of China, 2017.
CAI Z B, SHUI W. Announcement on improving the value-added tax policy for comprehensive utilization of resources[J]. Resource Recycling, 2021(12): 52-54.
The Ministry of Industry and Information Technology and other eight departments issued the Implementation Plan on Accelerating the Comprehensive Utilization of Industrial Resources[J]. Resource Recycling, 2022(2): 44-47.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Coding regulation for automotive traction battery: GB/T 34014—2017[S]. Beijing: Standards Press of China, 2017.
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Recycling of traction battery used in electric vehicle—Management specification—Part 1: Packing and transporting: GB/T 38698.1—2020[S]. Beijing: Standards Press of China, 2020.
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Recycling of traction battery used in electric vehicle—Echelon use—Part 2: Removing requirements: GB/T 34015.2—2020[S]. Beijing: Standards Press of China, 2020.
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Recovery of traction battery used in electric vehicle—Echelon use—Part 3: Echelon using requirement: GB/T 34015.3—2021[S]. Beijing: Standards Press of China, 2021.
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Recovery of traction battery used in electric vehicle—Echelon use—Part 4: Labels for echelon used battery products: GB/T 34015.4—2021[S]. Beijing: Standards Press of China, 2021.
CHU B, YANG H D. Discussion on comprehensive utilization method and development path of retired power batteries[J]. Electronic Components and Information Technology, 2022, 6(1): 110-111.
LI M Y. Research on the construction of reverse logistics network for waste batteries of electric vehicles in uncertain environment[D]. Shanghai: Donghua University, 2014.
WANG D. Research on optimization of reverse logistics network for retired batteries of electric vehicles in Beijing[D]. Beijing: North China Electric Power University, 2020.
LIANG S F. Research on the network construction of different recovery modes of power battery in cascade utilization scenarios[D]. Beijing: Beijing Jiaotong University, 2021.
LIU Z W. Modeling and optimization of electric vehicle battery recovery network under uncertainty[D]. Beijing: North China Electric Power University, 2021.
ZHOU X J, LI J Z, LI F, et al. Power battery recycling supply chain model for new energy vehicles based on Blockchain[J/OL]. Computer Integrated Manufacturing Systems, 1-15[2022-03-15]. http://kns.cnki.net/kcms/detail/11.5946.TP.20220314.1252.026.html.
JIANG X, CHEN Y, MENG X, et al. The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review[J]. Carbon: An International Journal Sponsored by the American Carbon Society, 2022(191): 448-470.
HU X S, DENG X C, WANG F, et al. A review of second-life lithium-ion batteries for stationary energy storage applications[J]. Proceedings of the IEEE, 2022, 110(6): 735-753.
YU P. Study on aging mechanism and modeling of power lithium-ion battery for electric vehicle[D]. Mianyang: Southwest University of Science and Technology, 2022.
JI C W, PAN S, WANG S F, et al. Experimental study on effect factors of aging rate for power lithium-ion batteries[J]. Journal of Beijing University of Technology, 2020, 46(11): 1272-1282.
SUN B X, REN P B, CHEN Y Z, et al. Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 666-674.
YANG X G, LENG Y J, ZHANG G S, et al. Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging[J]. Journal of Power Sources, 2017, 360: 28-40.
QIAN Y T, HAN X L, WANG H M. Step utilization analysis of retired power battery applied in energy storage system[J]. China High and New Technology, 2022(6): 105-108.
XIAO X, TIAN P G, YU L, et al. Status and prospect of safety studies of cascade power battery energy storage system[J]. Journal of Electrical Engineering, 2022, 17(1): 206-224.
ZHANG Y, ZHOU Z K, YANG X C, et al. A novel screening approach based on neural network for the second usage of retired lithiumion batteries[C]//2020 Chinese Automation Congress (CAC). November 6-8, 2020, Shanghai, China. IEEE, 2021: 1193-1197.
WEI Z X, HAN X J, LI X. State of health assessment for echelon utilization batteries based on deep neural network[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 518-524.
YU L, ZHANG H, TIAN P G, et al. A battery safety evaluation method for reuse of retired power battery in energy storage system[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 446-453.
CHAI J Y, HOU E G, LI Y Y. State of charge estimation for cascade batteries based on adaptive Kalman filtering[J]. Journal of University of Jinan (Science and Technology), 2021, 35(2): 165-169.
WANG P, PENG X Y, CHENG Z. SOH estimation method for lithium-ion batteries based on DTV-IGPR model[J]. Automotive Engineering, 2021, 43(11): 1710-1719.
LUO F, HUANG H H, WANG H X. Rapid prediction of the state of charge and state of health of decommissioned power batteries based on electrochemical impedance spectroscopy[J]. Chinese Journal of Scientific Instrument, 2021, 42(9): 172-180.
GENG M M, HUI D, LIU H M, et al. Research on online estimation method of health state of retired ternary battery[J]. Chinese Journal of Power Sources, 2022, 46(3): 262-266.
WANG P, GONG Q R, ZHANG J, et al. An online state of health prediction method for lithium batteries based on combination of data-driven and empirical model[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5201-5212.
LI J L, LI Y X, LÜ C, et al. Key technology of retired batteries' screening and clustering under target of carbon neutrality[J]. Power System Technology, 2022, 46(2): 429-441.
XUE F Q. Research on state evaluation and key technologies of cascade utilization of retired power battery of electric vehicle[D]. Hangzhou: Zhejiang University of Science & Technology, 2022.
MA S L, LI J L, LI Y X, et al. Customized clustering optimization method for battery cascade utilization screening requirements[J]. Proceedings of the CSEE, 2022, 42(17): 6208-6220.
WANG C, YUAN Z Y, WANG Y W, et al. Overview of key technologies for echelon utilization of decommissioned power batteries[J]. Advances in New and Renewable Energy, 2021, 9(4): 327-341.
WANG S, YIN Z D, ZHENG Z, et al. The influence of cell parameters inconsistency on the performance of different topological battery modules[J]. Electrical Measurement & Instrumentation, 2020, 57(10): 76-82, 107.
HAN Y Z. Study on the influence of inconsistency of lithium batteries on output characteristics under different topologies[D]. Beijing: North China Electric Power University, .
WANG Z S, DU X H, CHEN H Y, et al. Capacity optimization of hybrid power plants considering power battery ladder utilization[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 533-540.
ZHAO W, YUAN X L, ZHOU Y X, et al. Capacity configuration method of a second-use battery energy storage system considering economic optimization within service life[J]. Power System Protection and Control, 2021, 49(12): 16-24.
LIU G G. Energy management strategy of hybrid energy storage system with cascaded batteries in microgrid system[D]. Wuhan: Hubei University of Technology, 2020.
LI X Z, CHEN L J, DU X L, et al. Study on long-term planning of shared energy storage at power generation considering attenuation characteristics of retired power batteries[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 499-509.
CUI C S, XIE L R, BAO H Y, et al. Capacity configuration of retired battery energy storage system for smoothing wind power fluctuations[J]. Chinese Journal of Power Sources, 2020, 44(8): 1185-1190.
ZHENG Y Q, WU Y, ZHANG P P, et al. Cooperative control strategy of battery simultaneous decommissioning in cascade energy storage system based on multi-branch topology[J]. Energy Storage Science and Technology, 2021, 10(6): 2283-2292.
WANG Y F, YE J B, XUE H, et al. Optimal control for energy storage system with echelon utilization batteries based on improved rain-flow counting method[J]. Automation of Electric Power Systems, 2022, 46(8): 39-49.
MA L, WEI C W, XIE L R, et al. Coordinated control strategy for wind storage active power of decommissioned power battery[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 437-443.
LI X Z, CHEN L J, DU X L, et al. Hierarchical coordinated control strategy of centralized shared energy storage considering attenuation characteristics of retired power batteries[J]. Solar Energy, 2022(5): 87-95.
Letter of the Comprehensive Department of the National Energy Administration on Soliciting opinions on 25 Key Requirements for Preventing Accidents in Power Production (2022 Version) (Draft for Soliciting Opinions)[EB/OL]. [2022-06-29]. http://www.nea.gov.cn/2022-06/29/c_1310635544.html.
... 退役动力电池从回收到最后实际应用,对其当前状态进行检测评估必不可少,深入了解动力电池老化原理是各项评估技术发展进步的基础.锂电池是当前市场上使用最广泛的电池之一,电池内部构成如图3所示,在其充放电过程中会发生一些不可逆的化学反应导致电池的老化,老化机理可分为三类:锂离子的损失(loss of lithium inventory,LLI)、活性材料的损失(loss of active material,LAM)以及内阻增加[24].锂电池的工作原理是基于正极和负极活性材料的插层和脱层[25],因此锂离子以及活性材料的数量直接影响电池的容量.LAM主要由石墨剥落、金属溶解和颗粒断裂等引起[26];LLI主要由锂的沉积及固体电解质相界面膜(solid electrolyte interface,SEI)引起,首次充放电时锂离子会跟电解质和有机溶剂发生反应,在电极与电解液的接触面上生成SEI保护电池内部结构稳定[27],但会不可逆地消耗锂和电解质,导致电池性能衰退. ...
1
... 退役动力电池从回收到最后实际应用,对其当前状态进行检测评估必不可少,深入了解动力电池老化原理是各项评估技术发展进步的基础.锂电池是当前市场上使用最广泛的电池之一,电池内部构成如图3所示,在其充放电过程中会发生一些不可逆的化学反应导致电池的老化,老化机理可分为三类:锂离子的损失(loss of lithium inventory,LLI)、活性材料的损失(loss of active material,LAM)以及内阻增加[24].锂电池的工作原理是基于正极和负极活性材料的插层和脱层[25],因此锂离子以及活性材料的数量直接影响电池的容量.LAM主要由石墨剥落、金属溶解和颗粒断裂等引起[26];LLI主要由锂的沉积及固体电解质相界面膜(solid electrolyte interface,SEI)引起,首次充放电时锂离子会跟电解质和有机溶剂发生反应,在电极与电解液的接触面上生成SEI保护电池内部结构稳定[27],但会不可逆地消耗锂和电解质,导致电池性能衰退. ...
1
... 退役动力电池从回收到最后实际应用,对其当前状态进行检测评估必不可少,深入了解动力电池老化原理是各项评估技术发展进步的基础.锂电池是当前市场上使用最广泛的电池之一,电池内部构成如图3所示,在其充放电过程中会发生一些不可逆的化学反应导致电池的老化,老化机理可分为三类:锂离子的损失(loss of lithium inventory,LLI)、活性材料的损失(loss of active material,LAM)以及内阻增加[24].锂电池的工作原理是基于正极和负极活性材料的插层和脱层[25],因此锂离子以及活性材料的数量直接影响电池的容量.LAM主要由石墨剥落、金属溶解和颗粒断裂等引起[26];LLI主要由锂的沉积及固体电解质相界面膜(solid electrolyte interface,SEI)引起,首次充放电时锂离子会跟电解质和有机溶剂发生反应,在电极与电解液的接触面上生成SEI保护电池内部结构稳定[27],但会不可逆地消耗锂和电解质,导致电池性能衰退. ...
1
... 退役动力电池从回收到最后实际应用,对其当前状态进行检测评估必不可少,深入了解动力电池老化原理是各项评估技术发展进步的基础.锂电池是当前市场上使用最广泛的电池之一,电池内部构成如图3所示,在其充放电过程中会发生一些不可逆的化学反应导致电池的老化,老化机理可分为三类:锂离子的损失(loss of lithium inventory,LLI)、活性材料的损失(loss of active material,LAM)以及内阻增加[24].锂电池的工作原理是基于正极和负极活性材料的插层和脱层[25],因此锂离子以及活性材料的数量直接影响电池的容量.LAM主要由石墨剥落、金属溶解和颗粒断裂等引起[26];LLI主要由锂的沉积及固体电解质相界面膜(solid electrolyte interface,SEI)引起,首次充放电时锂离子会跟电解质和有机溶剂发生反应,在电极与电解液的接触面上生成SEI保护电池内部结构稳定[27],但会不可逆地消耗锂和电解质,导致电池性能衰退. ...
1
... 退役动力电池从回收到最后实际应用,对其当前状态进行检测评估必不可少,深入了解动力电池老化原理是各项评估技术发展进步的基础.锂电池是当前市场上使用最广泛的电池之一,电池内部构成如图3所示,在其充放电过程中会发生一些不可逆的化学反应导致电池的老化,老化机理可分为三类:锂离子的损失(loss of lithium inventory,LLI)、活性材料的损失(loss of active material,LAM)以及内阻增加[24].锂电池的工作原理是基于正极和负极活性材料的插层和脱层[25],因此锂离子以及活性材料的数量直接影响电池的容量.LAM主要由石墨剥落、金属溶解和颗粒断裂等引起[26];LLI主要由锂的沉积及固体电解质相界面膜(solid electrolyte interface,SEI)引起,首次充放电时锂离子会跟电解质和有机溶剂发生反应,在电极与电解液的接触面上生成SEI保护电池内部结构稳定[27],但会不可逆地消耗锂和电解质,导致电池性能衰退. ...
1
... 退役动力电池从回收到最后实际应用,对其当前状态进行检测评估必不可少,深入了解动力电池老化原理是各项评估技术发展进步的基础.锂电池是当前市场上使用最广泛的电池之一,电池内部构成如图3所示,在其充放电过程中会发生一些不可逆的化学反应导致电池的老化,老化机理可分为三类:锂离子的损失(loss of lithium inventory,LLI)、活性材料的损失(loss of active material,LAM)以及内阻增加[24].锂电池的工作原理是基于正极和负极活性材料的插层和脱层[25],因此锂离子以及活性材料的数量直接影响电池的容量.LAM主要由石墨剥落、金属溶解和颗粒断裂等引起[26];LLI主要由锂的沉积及固体电解质相界面膜(solid electrolyte interface,SEI)引起,首次充放电时锂离子会跟电解质和有机溶剂发生反应,在电极与电解液的接触面上生成SEI保护电池内部结构稳定[27],但会不可逆地消耗锂和电解质,导致电池性能衰退. ...