The proton exchange membrane fuel cell (PEMFC) must ensure adequate hydration of the proton exchange membrane during operation while preventing condensed liquid water from blocking the mass transfer channel. To analyze the effect of cathode relative humidity on membrane water content and PEMFC's output performance, a cathode inlet water content (CIWC) model was developed. First, this model considers the influence of temperature and water content on membrane resistance, derives a formula for calculating membrane water content, and couples the CIWC model with the computational fluid dynamics software FLUENT for computation. Second, a fuel cell test bench was constructed to perform experiments at an operating temperature of 60 ℃, 100% anode relative humidity, and 50%, 75%, and 100% cathode relative humidity, respectively. Finally, the simulated data of the CIWC model and the FLUENT built-in model were compared with experimental values. The species distribution of membrane water content, membrane conductivity, and molar water fraction in the catalytic layer on the cathode side were analyzed. The results show that at a cathode relative humidity of 50%, the CIWC model's accuracy improved by 17.67% compared to the FLUENT model at a voltage of 0.739 V. The maximum relative error between the CIWC model and experimental value was 5.66% at 100% cathode relative humidity. As the cathode's relative humidity increases, the membrane water content continuously rises at a voltage of 0.75 V and approaches saturation at 0.6 V. The membrane water content, proton conductivity, and molar water fraction in the catalytic layer gradually increase in the flow field directly from the air inlet to the outlet. At a cathode relative humidity of 75%, the fuel cell output power density reaches 272.08 mW/cm2, and the membrane water content distribution becomes more uniform.
YU Yongshuai. Effect of cathode relative humidity on membrane water content and performance of PEMFC[J]. Energy Storage Science and Technology, 2023, 12(6): 1755-1764
PEMFC的性能和质子电导率密切相关,质子电导率是电解质水含量和温度的函数,取决于电解质的水合度,不少学者探究进气相对湿度对电池性能的影响,从孔隙结构、催化剂有效面积等考虑液态水对电池性能的影响,未考虑进气相对湿度和电解质水含量二者共同作用对电池输出性能的影响。本工作基于Springer等[22]的模型,考虑膜的电阻随温度和水含量的变化,提出CIWC(cathode inlet water content)模型,将模型导入流体力学计算软件Fluent进行计算,并搭建燃料电池测试平台,在工作温度为60 ℃,三种(阴极相对湿度50%、75%、100%)不同进气工况下进行实验,结合仿真和实验数据,探究阴极相对湿度对电解质水含量及电池输出性能的影响,为优化燃料电池入口气体相对湿度和缓解局部电解质水含量不足提供理论依据,以保证电池的稳定工作和高性能输出。
依据PEMFC的实际尺寸建立几何模型,模型包括集流板、平行蛇形流道、扩散层、催化层、质子交换膜。将建好的模型进行网格划分,由于多孔材料的浓度变化梯度大,对催化层和质子交换膜区域的网格进行了局部加密,设置流体区域,集流板设置为固体,其余部分设置为流体;将网格文件导入Fluent软件中,检查网格质量及是否出现负体积,调整网格直至网格良好。调用质子交换膜燃料电池模块,设置材料及进气参数,阴阳极出入口边界条件采用质量流量入口和压力出口边界条件组合,即出口压力恒定,入口流量根据实际工况计算得到。通过自定义函数(user defined function)将CIWC模型耦合进Fluent中进行仿真计算,采用SIMPLE算法,实现压力与速度的耦合,采用一阶迎风格式对密度、能量、电势、动量、水含量和液态水饱和度进行离散化,设置残差标准,并监测电流密度、进气压力、出口湿度等残差值均小于10-6;按照恒电压进行仿真计算,依据函数曲线收敛趋势及时对所设定的参数进行修改,直到仿真数据合理,计算流程如图1所示。
IJAODOLA O S, EL-HASSAN Z, OGUNGBEMI E, et al. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)[J]. Energy, 2019, 179: 246-267.
GE R T, ZHENG Y H. Review on the progress of heat and mass transfer analysis of fuel cells[J]. Energy Storage Science and Technology, 2020, 9(1): 40-56.
REN P, PEI P C, LI Y H, et al. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions[J]. Progress in Energy and Combustion Science, 2020, 80: doi: 10.1016/j.pecs.2020.100859.
WAN Y M, XIONG Y L, WANG X Y. Strategic analysis of hydrogen energy development in major countries[J]. Energy Storage Science and Technology, 2022, 11(10): 3401-3410.
LIU Y, BAI S, WEI P, et al. Numerical and experimental investigation of the asymmetric humidification and dynamic temperature in proton exchange membrane fuel cell[J]. Fuel Cells, 2020, 20(1): 48-59.
JEON D H, KIM K N, BAEK S M, et al. The effect of relative humidity of the cathode on the performance and the uniformity of PEM fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(19): 12499-12511.
OZEN D N, TIMURKUTLUK B, ALTINISIK K. Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 1298-1306.
MULYAZMI, DAUD W R W, OCTAVIA S, et al. The relative humidity effect of the reactants flows into the cell to increase PEM fuel cell performance[J]. MATEC Web of Conferences, 2018, 156: doi:10.1051/matecconf/201815603033.
ZHANG J L, TANG Y H, SONG C J, et al. PEM fuel cell relative humidity (RH) and its effect on performance at high temperatures[J]. Electrochimica Acta, 2008, 53(16): 5315-5321.
JIAN Q F, MA G Q, QIU X L. Influences of gas relative humidity on the temperature of membrane in PEMFC with interdigitated flow field[J]. Renewable Energy, 2014, 62: 129-136.
MIGLIARDINI F, UNICH A, CORBO P. Experimental comparison between external and internal humidification in proton exchange membrane fuel cells for road vehicles[J]. International Journal of Hydrogen Energy, 2015, 40(17): 5916-5927.
WANG Y L, WANG S X, LIU S C, et al. Optimization of reactants relative humidity for high performance of polymer electrolyte membrane fuel cells with co-flow and counter-flow configurations[J]. Energy Conversion and Management, 2020, 205: doi: 10.1016/j.enconman.2019.112369.
CHENG Z Y, LUO L Z, HUANG B, et al. Effect of humidification on distribution and uniformity of reactants and water content in PEMFC[J]. International Journal of Hydrogen Energy, 2021, 46(52): 26560-26574.
ÖZDEMİR S N, TAYMAZ İ. A CFD modeling study based on relative humidity effect on PEMFC performance[J]. International Journal of Automotive Science and Technology, 2021, 5(3): 192-198.
IRANZO A, BOILLAT P, BIESDORF J, et al. Investigation of the liquid water distributions in a 50 cm2 PEM fuel cell: Effects of reactants relative humidity, current density, and cathode stoichiometry[J]. Energy, 2015, 82: 914-921.
LU J B, SHEN X M, CHEN M, et al. Synergistic effect of cathode humidity and current density on performance of PEMFC[J]. Chinese Journal of Power Sources, 2021, 45(8): 1018-1022.
GINER-SANZ J J, ORTEGA E M, PÉREZ-HERRANZ V. Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2018, 381: 84-93.
KITAMURA N, MANABE K, NONOBE Y, et al. Development of water content control system for fuel cell hybrid vehicles based on AC impedance[R]. SAE Technical Paper, 2010: doi: 10.4271/2010-01-1088.
PENG Z, BADETS V, HUGUET P, et al. Operando μ-Raman study of the actual water content of perfluorosulfonic acid membranes in the fuel cell[J]. Journal of Power Sources, 2017, 356: 200-211.
LIM B H, MAJLAN E H, DAUD W R W, et al. Effects of flow field design on water management and reactant distribution in PEMFC: A review[J]. Ionics, 2016, 22(3): 301-316.
WANG B H, LIN R, LIU D C, et al. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13737-13743.
LIU Q S, LAN F C, CHEN J Q, et al. A review of proton exchange membrane fuel cell water management: Membrane electrode assembly[J]. Journal of Power Sources, 2022, 517: doi: 10.1016/j.jpowsour.2021.230723.
PENG Y J, ZHANG G R, WANG Y, et al. Differences on the influences of humidity of cathod and anode on the performance of proton exchange membrane fuel cell[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 196-203.
YAN Q G, TOGHIANI H, CAUSEY H. Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes[J]. Journal of Power Sources, 2006, 161(1): 492-502.