Research progress of polymer electrolytes containing organoboron for lithium-ion batteries
HUANG Lingfeng,1, HAN Dongmei2, HUANG Sheng1, WANG Shuanjin1, XIAO Min,1, MENG Yuezhong1
1.The Key of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
2.School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
Polymer-based solid-state lithium batteries have become a promising energy storage device that can meet the high energy density and high safety requirements due to the high safety, flexibility, interface compatibility with electrodes, and easy processing of solid polymer electrolytes. Organoboron compounds have received significant attention in the research on polymer electrolytes for lithium-ion batteries because of their wide range of design possibilities, excellent thermal stability, and the prospect of increasing the Li+ transference number of electrolytes. This paper summarizes the latest research progress of polymer electrolytes, containing organoboron for lithium-ion batteries. First, the advantages, composition, and classification of polymer electrolytes for lithium-ion batteries are briefly introduced. Then, the application of anionic borate-based single-ion conducting and borate ester-based polymer electrolyte, borate lithium salts, boron ester, and borane electrolyte additives in polymer lithium-ion batteries are introduced in detail. The comprehensive analysis shows that boron-containing groups, covalently linked to the polymer electrolyte, can increase the Li+ transference number and suppress the growth of lithium dendrites. Using organoboron electrolyte additives can improve the interface contact and construct a stable SEI between the electrode and electrolyte. Finally, the challenges facing the practical application of polymer electrolytes containing organoboron are pointed out, and future research directions are prospected. This review aims to highlight the potential application of boron in polymer electrolytes and provide new insights for the research and development of polymer-based solid-state lithium batteries.
HUANG Lingfeng. Research progress of polymer electrolytes containing organoboron for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(6): 1815-1830
Fig. 2
Structure of the anionic borate network polymer[35] (a) The single-ion conducting anionic borate network polymer, ANP-5, developed as an electrolyte for an all-solid-state lithium metal battery; (b) The tetrafluorophenyl borate anion nodes (red) are physically anchored while the lithium cations are mobile throughout the material, acting as the dominant contributors to ionic conductivity. The cis-2-butene-1,4-diol linker (green) facilitates crosslinking to generate a membrane polymer resistant to swelling in the presence of plasticizer; (c) Schematic of a lithium metal battery featuring ANP-5 as the electrolyte
Fig. 7
(a) Schematic of synthesizing poly(B-GMA) by RAFT polymerization[47]; (b) Schematic illustration of the fabrication of the multifunctional DB-SHPE[47]; (c) Schematic diagrams showing the self-healing mechanism in the DB-SHPE[47]; (d) The contribution of the boron moieties in DB-SHPE to the homogeneous deposition of Li ions in LMBs[47]
聚环氧乙烷(PEO)是被研究得最多的一种聚合物电解质,但其高压稳定性差,在高压正极界面处容易氧化,导致容量快速衰减,限制了其在高能量密度全固态电池中的应用[65-66]。构建双层固态电解质是实现PEO基SPE在高压锂金属电池中应用的有效方法。Han等[67]开发了一种含双锂盐的双层PEO电解质,如图9所示。主电解质为通过溶液浇铸法制备的PEO/LiTFSI,另外简单地将PEO/LiDFOB溶液滴加到LiCoO2正极表面来构建薄的涂层,降低了电解质与正极之间的界面阻抗。引入的LiDFOB有助于在循环过程中原位形成包含Li x B x O y 和LiF的CEI膜,这有效地抑制了LiCoO2正极和PEO电解质在高电压下的副反应。使用这种双层电解质组装的LiCoO2全固态锂电池在0.2 C下循环100次后的容量保持率为75%,显著高于使用PEO/LiTFSI单层电解质的15%。
Fig. 10
(a) Schematic diagram of ex situ SPE with low ionic conductivity, unstable SEI, poor interfacial stability and inflammable[83]; (b) Schematic diagram of PDE with high ionic conductivity, stable SEI, good interfacial stability and flame-retardant[83]; (c) Schematic diagram of the polymerization mechanism of PDE[83]; (d) Structure formulas of DOL and poly-DOL[83]
PAN J, ZHAO P, WANG N N, et al. Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes[J]. Energy & Environmental Science, 2022, 15(7): 2753-2775.
KANG J, HAN D Y, KIM S, et al. Multiscale polymeric materials for advanced lithium battery applications[J]. Advanced Materials, 2023, 35(4): doi: 10.1002/adma.202203194.
CHEN S H, QIU L, CHENG H M. Carbon-based fibers for advanced electrochemical energy storage devices[J]. Chemical Reviews, 2020, 120(5): 2811-2878.
LI J H, CAI Y F, WU H M, et al. Polymers in lithium-ion and lithium metal batteries[J]. Advanced Energy Materials, 2021, 11(15): doi: 10.1002/aenm.202003239.
JUDEZ X, ESHETU G G, LI C M, et al. Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes[J]. Joule, 2018, 2(11): 2208-2224.
WANG Q L, CUI Z L, ZHOU Q, et al. A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries[J]. Energy Storage Materials, 2020, 25: 756-763.
LEI W, LI H, TANG Y X, et al. Progress and perspectives on electrospinning techniques for solid-state lithium batteries[J]. Carbon Energy, 2022, 4(4): 539-575.
ZHANG P, LAI X Q, SHEN J R, et al. Research and industrialization progress of solid-state lithium battery[J]. Energy Storage Science and Technology, 2021, 10(3): 896-904.
JIANG F, WANG Y T, JU J W, et al. Percolated sulfide in salt-concentrated polymer matrices extricating high-voltage all-solid-state lithium-metal batteries[J]. Advanced Science, 2022, 9(25): doi: 10.1002/advs.202202474.
DAI K, ZHENG Y, WEI W F. Organoboron-containing polymer electrolytes for high-performance lithium batteries[J]. Advanced Functional Materials, 2021, 31(13): doi: 10.1002/adfm.202008632.
WAN J, YAN H J, WEN R, et al. In situ visualization of electrochemical processes in solid-state lithium batteries[J]. ACS Energy Letters, 2022, 7(9): 2988-3002.
POMERANTSEVA E, BONACCORSO F, FENG X L, et al. Energy storage: The future enabled by nanomaterials[J]. Science, 2019, 366: doi: 10.1126/science.aan8285.
ZHOU W D, HUANG Q, XIE X X, et al. Research progress of polymer electrolyte for solid state lithium batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805.
YANG H, ZHANG B, JING M X, et al. In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries[J]. Advanced Energy Materials, 2022, 12(39): doi: 10.1002/aenm.202201762.
WEN S J, LUO C, WANG Q R, et al. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries[J]. Energy Storage Materials, 2022, 47: 453-461.
MENG N, LIAN F, CUI G L. Macromolecular design of lithium conductive polymer as electrolyte for solid-state lithium batteries[J]. Small, 2021, 17(3): doi: 10.1002/smll.202005762.
SU Y, RONG X H, GAO A, et al. Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-31792-5.
FAN L Z, HE H C, NAN C W. Tailoring inorganic–polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials, 2021, 6(11): 1003-1019.
SHAJI I, DIDDENS D, EHTESHAMI N, et al. Multisalt chemistry in ion transport and interface of lithium metal polymer batteries[J]. Energy Storage Materials, 2022, 44: 263-277.
WEN K H, XIN C Z, GUAN S D, et al. Ion–dipole interaction regulation enables high-performance single-ion polymer conductors for solid-state batteries[J]. Advanced Materials, 2022, 34(32): doi: 10.1002/adma.202202143.
FAN X Y, ZHONG C, LIU J, et al. Opportunities of flexible and portable electrochemical devices for energy storage: Expanding the spotlight onto semi-solid/solid electrolytes[J]. Chemical Reviews, 2022, 122(23): 17155-17239.
DENG K R, ZENG Q G, WANG D, et al. Single-ion conducting gel polymer electrolytes: Design, preparation and application[J]. Journal of Materials Chemistry A, 2020, 8(4): 1557-1577.
ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252.
GUZMÁN-GONZÁLEZ G, VAUTHIER S, ALVAREZ-TIRADO M, et al. Single-ion lithium conducting polymers with high ionic conductivity based on borate pendant groups[J]. Angewandte Chemie International Edition, 2022, 61(7): doi: 10.1002/anie.202114024.
MA Q, ZHANG H, ZHOU C W, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie International Edition, 2016, 55(7): 2521-2525.
PRAKASH REDDY V, BLANCO M, BUGGA R. Boron-based anion receptors in lithium-ion and metal-air batteries[J]. Journal of Power Sources, 2014, 247: 813-820.
VAN HUMBECK J F, AUBREY M L, ALSBAIEE A, et al. Tetraarylborate polymer networks as single-ion conducting solid electrolytes[J]. Chemical Science, 2015, 6(10): 5499-5505.
SHIN D M, BACHMAN J E, TAYLOR M K, et al. A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries[J]. Advanced Materials, 2020, 32(10): doi: 10.1002/adma.201905771.
LI H, DU Y F, ZHANG Q, et al. A single-ion conducting network as rationally coordinating polymer electrolyte for solid-state Li metal batteries[J]. Advanced Energy Materials, 2022, 12(13): doi: 10.1002/aenm.202103530.
WANG X, SUN J J, FENG C H, et al. Lithium bis(oxalate)borate crosslinked polymer electrolytes for high-performance lithium batteries[J]. Journal of Energy Chemistry, 2021, 55: 228-235.
LIU K W, JIANG S S, DZWINIEL T L, et al. Molecular design of a highly stable single-ion conducting polymer gel electrolyte[J]. ACS Applied Materials & Interfaces, 2020: doi: 10.1021/acsami.0c03363.
ZENG X F, DONG L N, FU J F, et al. Enhanced interfacial stability with a novel boron-centered crosslinked hybrid polymer gel electrolytes for lithium metal batteries[J]. Chemical Engineering Journal, 2022, 428: doi: 10.1016/j.cej.2021.131100.
ZHANG Y F, PAN M Z, LIU X P, et al. Overcoming the ambient-temperature operation limitation in lithium-ion batteries by using a single-ion polymer electrolyte fabricated by controllable molecular design[J]. Energy Technology, 2018, 6(2): 289-295.
ZHANG Y F, WANG J Y, TAN C, et al. Fire-retardant sp3 boron-based single ion conducting polymer electrolyte for safe, high efficiency and dendrite-free Li-metal batteries[J]. Journal of Membrane Science, 2021, 620: doi: 10.1016/j.memsci.2020.118921.
BANDYOPADHYAY S, GUPTA A, SRIVASTAVA R, et al. Bio-inspired design of electrospun poly(acrylonitrile) and novel ionene based nanofibrous mats as highly flexible solid state polymer electrolyte for lithium batteries[J]. Chemical Engineering Journal, 2022, 440: doi: 10.1016/j.cej.2022.135926.
DENG K R, QIN J X, WANG S J, et al. Effective suppression of lithium dendrite growth using a flexible single-ion conducting polymer electrolyte[J]. Small, 2018, 14(31): doi: 10.1002/smll.201801420.
ELIZALDE F, AMICI J, TRANO S, et al. Self-healable dynamic poly(urea-urethane) gel electrolyte for lithium batteries[J]. Journal of Materials Chemistry A, 2022, 10(23): 12588-12596.
HUANG Y J, SHI Z, WANG H L, et al. Shape-memory and self-healing polyurethane-based solid polymer electrolytes constructed from polycaprolactone segment and disulfide metathesis[J]. Energy Storage Materials, 2022, 51: 1-10.
ZOU W H, FAN Y, ZHANG Y Y, et al. Research progress on room-temperature polymer-based electrolytes for safe solid-state lithium batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5029-5044.
ZHOU B H, DENG T Z, YANG C L, et al. Self-healing and recyclable polymer electrolyte enabled with boronic ester transesterification for stabilizing ion deposition[J]. Advanced Functional Materials, 2023, 33(13): doi: 10.1002/adfm.202212005.
MA C, FENG Y M, XING F Z, et al. A borate decorated anion-immobilized solid polymer electrolyte for dendrite-free, long-life Li metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(34): 19970-19976.
ZHOU B H, ZHOU Y, LAI L J, et al. Fabrication of borate-based porous polymer electrolytes containing cyclic carbonate for high-performance lithium metal batteries[J]. ACS Applied Energy Materials, 2021, 4(9): 9582-9593.
LIU P, ZHANG J W, ZHONG L, et al. Interphase building of organic–inorganic hybrid polymer solid electrolyte with uniform intermolecular Li+ path for stable lithium metal batteries[J]. Small, 2021, 17(41): doi: 10.1002/smll.202102454.
MA J Y, MA X Y, ZHANG H P, et al. In-situ generation of poly(ionic liquid) flexible quasi-solid electrolyte supported by polyhedral oligomeric silsesquioxane/polyvinylidene fluoride electrospun membrane for lithium metal battery[J]. Journal of Membrane Science, 2022, 659: doi: 10.1016/j.memsci.2022.120811.
ZHANG J F, MA C, HOU H, et al. A star-shaped solid composite electrolyte containing multifunctional moieties with enhanced electrochemical properties for all solid-state lithium batteries[J]. Journal of Membrane Science, 2018, 552: 107-114.
LEE A S, LEE J H, HONG S M, et al. Boronic ionogel electrolytes to improve lithium transport for Li-ion batteries[J]. Electrochimica Acta, 2016, 215: 36-41.
DAI K, MA C, FENG Y M, et al. A borate-rich, cross-linked gel polymer electrolyte with near-single ion conduction for lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(31): 18547-18557.
XU D, SU J M, JIN J, et al. In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12As initiator and ion-conductive filler[J]. Advanced Energy Materials, 2019, 9(25): doi: 10.1002/aenm.201900611.
DENG K R, GUAN T Y, LIANG F H, et al. Flame-retardant single-ion conducting polymer electrolytes based on anion acceptors for high-safety lithium metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(12): 7692-7702.
WU X, ZHOU L, XUE Z M. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts[J]. Energy Storage Science and Technology, 2021, 10(1): 96-103.
MAO M, HUANG B H, LI Q D, et al. In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery[J]. Nano Energy, 2020, 78: doi: 10.1016/j.nanoen.2020.105282.
LIU Z H, CHAI J C, XU G J, et al. Functional lithium borate salts and their potential application in high performance lithium batteries[J]. Coordination Chemistry Reviews, 2015, 292: 56-73.
GENG Z, LU J Z, LI Q, et al. Lithium metal batteries capable of stable operation at elevated temperature[J]. Energy Storage Materials, 2019, 23: 646-652.
CAO W Z, LU J Z, ZHOU K, et al. Organic-inorganic composite SEI for a stable Li metal anode by in situ polymerization[J]. Nano Energy, 2022, 95: doi: 10.1016/j.nanoen.2022.106983.
XU Q, YANG Y F, SHAO H X. Compatibility of lithium oxalyldifluoroborate with lithium metal anode in rechargeable batteries[J]. Electrochimica Acta, 2018, 259: 534-541.
WANG P, CUI X L, ZHAO D N, et al. Effects of soluble products decomposed from chelato-borate additives on formation of solid electrolyte interface layers[J]. Journal of Power Sources, 2022, 535: doi: 10.1016/j.jpowsour.2022.231451.
FU F, ZHENG Y, JIANG N, et al. A Dual-Salt PEO-based polymer electrolyte with Cross-Linked polymer network for High-Voltage lithium metal batteries[J]. Chemical Engineering Journal, 2022, 450: doi: 10.1016/j.cej.2022.137776.
TIAN S W, ZHOU L X, ZHANG B Q, et al. Key advances of high-voltage solid-state lithium metal batteries based on poly(ethylene oxide) polymer electrolytes[J]. Acta Chimica Sinica, 2022, 80(10): 1410-1423.
HAN Q Y, WANG S Q, KONG W H, et al. Realizing compatibility of high voltage cathode and poly (ethylene oxide) electrolyte in all-solid-state lithium batteries by bilayer electrolyte design[J]. Chemical Engineering Journal, 2023, 454: doi: 10.1016/j.cej.2022.140104.
WU H, TANG B, DU X F, et al. LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries[J]. Advanced Science, 2020, 7(23): doi: 10.1002/advs.202003370.
LIU Y L, XU Y L. Porous membrane host-derived in situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries[J]. Chemical Engineering Journal, 2022, 433: doi: 10.1016/j.cej.2021.134471.
LIAN F, LI Y, HE Y, et al. Preparation of LiBOB via rheological phase method and its application to mitigate voltage fade of Li1.16[Mn0.75Ni0.25]0.84O2 cathode[J]. RSC Advances, 2015, 5(105): 86763-86770.
ZHANG B D, WANG L L, WANG X T, et al. Sustained releasing superoxo scavenger for tailoring the electrode-electrolyte interface on Li-rich cathode[J]. Energy Storage Materials, 2022, 53: 492-504.
JIAO S H, REN X D, CAO R G, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739-746.
CHENG S H S, LIU C, ZHU F Y, et al. (Oxalato)borate: The key ingredient for polyethylene oxide based composite electrolyte to achieve ultra-stable performance of high voltage solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal battery[J]. Nano Energy, 2021, 80: doi: 10.1016/j.nanoen.2020.105562.
QIAO L X, CUI Z L, CHEN B B, et al. A promising bulky anion based lithium borate salt for lithium metal batteries[J]. Chemical Science, 2018, 9(14): 3451-3458.
JØRGENSEN M, SHEA P T, TOMICH A W, et al. Understanding superionic conductivity in lithium and sodium salts of weakly coordinating Closo-hexahalocarbaborate anions[J]. Chemistry of Materials, 2020, 32(4): 1475-1487.
GREEN M, KAYDANIK K, OROZCO M, et al. Closo-borate gel polymer electrolyte with remarkable electrochemical stability and a wide operating temperature window[J]. Advanced Science, 2022, 9(16): doi: 10.1002/advs.202106032.
SUN Z Y, ZHOU H B, LUO X H, et al. Design of a novel electrolyte additive for high voltage LiCoO2 cathode lithium-ion batteries: Lithium 4-benzonitrile trimethyl borate[J]. Journal of Power Sources, 2021, 503: doi: 10.1016/j.jpowsour.2021.230033.
CHAE O B, ADIRAJU V A K, LUCHT B L. Lithium cyano tris(2, 2, 2-trifluoroethyl) borate as a multifunctional electrolyte additive for high-performance lithium metal batteries[J]. ACS Energy Letters, 2021, 6(11): 3851-3857.
LI Y C, VEITH G M, BROWNING K L, et al. Lithium malonatoborate additives enabled stable cycling of 5V lithium metal and lithium ion batteries[J]. Nano Energy, 2017, 40: 9-19.
ROY B, CHEREPANOV P, NGUYEN C, et al. Lithium borate ester salts for electrolyte application in next-generation high voltage lithium batteries[J]. Advanced Energy Materials, 2021, 11(36): doi: 10.1002/aenm.202101422.
JIN Z Q, XIE K, HONG X B, et al. Capacity fading mechanism in lithium sulfur cells using poly(ethylene glycol)-borate ester as plasticizer for polymer electrolytes[J]. Journal of Power Sources, 2013, 242: 478-485.
KAYNAK M, YUSUF A, AYDIN H, et al. Enhanced ionic conductivity in borate ester plasticized Polyacrylonitrile electrolytes for lithium battery application[J]. Electrochimica Acta, 2015, 164: 108-113.
XIANG J W, ZHANG Y, ZHANG B, et al. A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature[J]. Energy & Environmental Science, 2021, 14(6): 3510-3521.
LI G J, FENG Y, ZHU J Y, et al. Achieving a highly stable electrode/electrolyte interface for a nickel-rich cathode via an additive-containing gel polymer electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36656-36667.
YANG L Y, WANG Z J, FENG Y C, et al. Flexible composite solid electrolyte facilitating highly stable "soft contacting" Li-electrolyte interface for solid state lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(22): doi: 10.1002/aenm.201770130.
... [35](a) 单离子导体硼酸盐网络聚合物ANP-5;(b) 四氟苯基硼酸根阴离子节点(红色)是物理锚定的,而锂离子在整个材料中是可移动的,顺-2-丁烯-1,4-二醇作为交联剂(绿色);(c) 以ANP-5作为电解质的锂金属电池示意图Structure of the anionic borate network polymer[35] (a) The single-ion conducting anionic borate network polymer, ANP-5, developed as an electrolyte for an all-solid-state lithium metal battery; (b) The tetrafluorophenyl borate anion nodes (red) are physically anchored while the lithium cations are mobile throughout the material, acting as the dominant contributors to ionic conductivity. The cis-2-butene-1,4-diol linker (green) facilitates crosslinking to generate a membrane polymer resistant to swelling in the presence of plasticizer; (c) Schematic of a lithium metal battery featuring ANP-5 as the electrolyteFig. 2
... [35] (a) The single-ion conducting anionic borate network polymer, ANP-5, developed as an electrolyte for an all-solid-state lithium metal battery; (b) The tetrafluorophenyl borate anion nodes (red) are physically anchored while the lithium cations are mobile throughout the material, acting as the dominant contributors to ionic conductivity. The cis-2-butene-1,4-diol linker (green) facilitates crosslinking to generate a membrane polymer resistant to swelling in the presence of plasticizer; (c) Schematic of a lithium metal battery featuring ANP-5 as the electrolyteFig. 2
... [47];(b) 多功能DB-SHPE制造示意图[47];(c) DB-SHPE自愈机制的示意图;(d) DB-SHPE中的硼部分对LMBs中Li+ 均匀沉积的贡献[47](a) Schematic of synthesizing poly(B-GMA) by RAFT polymerization[47]; (b) Schematic illustration of the fabrication of the multifunctional DB-SHPE[47]; (c) Schematic diagrams showing the self-healing mechanism in the DB-SHPE[47]; (d) The contribution of the boron moieties in DB-SHPE to the homogeneous deposition of Li ions in LMBs[47]Fig. 7
... [47];(c) DB-SHPE自愈机制的示意图;(d) DB-SHPE中的硼部分对LMBs中Li+ 均匀沉积的贡献[47](a) Schematic of synthesizing poly(B-GMA) by RAFT polymerization[47]; (b) Schematic illustration of the fabrication of the multifunctional DB-SHPE[47]; (c) Schematic diagrams showing the self-healing mechanism in the DB-SHPE[47]; (d) The contribution of the boron moieties in DB-SHPE to the homogeneous deposition of Li ions in LMBs[47]Fig. 7
... [47](a) Schematic of synthesizing poly(B-GMA) by RAFT polymerization[47]; (b) Schematic illustration of the fabrication of the multifunctional DB-SHPE[47]; (c) Schematic diagrams showing the self-healing mechanism in the DB-SHPE[47]; (d) The contribution of the boron moieties in DB-SHPE to the homogeneous deposition of Li ions in LMBs[47]Fig. 7
... [47]; (b) Schematic illustration of the fabrication of the multifunctional DB-SHPE[47]; (c) Schematic diagrams showing the self-healing mechanism in the DB-SHPE[47]; (d) The contribution of the boron moieties in DB-SHPE to the homogeneous deposition of Li ions in LMBs[47]Fig. 7
... [47]; (c) Schematic diagrams showing the self-healing mechanism in the DB-SHPE[47]; (d) The contribution of the boron moieties in DB-SHPE to the homogeneous deposition of Li ions in LMBs[47]Fig. 7
... [56];(b)AEP结构示意图[56](a) Synthesis of AEP via the photoinitiated thiol-ene click reaction[56]; (b) schematic illustration of the structure of AEP[56]Fig. 8
... 聚环氧乙烷(PEO)是被研究得最多的一种聚合物电解质,但其高压稳定性差,在高压正极界面处容易氧化,导致容量快速衰减,限制了其在高能量密度全固态电池中的应用[65-66].构建双层固态电解质是实现PEO基SPE在高压锂金属电池中应用的有效方法.Han等[67]开发了一种含双锂盐的双层PEO电解质,如图9所示.主电解质为通过溶液浇铸法制备的PEO/LiTFSI,另外简单地将PEO/LiDFOB溶液滴加到LiCoO2正极表面来构建薄的涂层,降低了电解质与正极之间的界面阻抗.引入的LiDFOB有助于在循环过程中原位形成包含Li x B x O y 和LiF的CEI膜,这有效地抑制了LiCoO2正极和PEO电解质在高电压下的副反应.使用这种双层电解质组装的LiCoO2全固态锂电池在0.2 C下循环100次后的容量保持率为75%,显著高于使用PEO/LiTFSI单层电解质的15%. ...
1
... 聚环氧乙烷(PEO)是被研究得最多的一种聚合物电解质,但其高压稳定性差,在高压正极界面处容易氧化,导致容量快速衰减,限制了其在高能量密度全固态电池中的应用[65-66].构建双层固态电解质是实现PEO基SPE在高压锂金属电池中应用的有效方法.Han等[67]开发了一种含双锂盐的双层PEO电解质,如图9所示.主电解质为通过溶液浇铸法制备的PEO/LiTFSI,另外简单地将PEO/LiDFOB溶液滴加到LiCoO2正极表面来构建薄的涂层,降低了电解质与正极之间的界面阻抗.引入的LiDFOB有助于在循环过程中原位形成包含Li x B x O y 和LiF的CEI膜,这有效地抑制了LiCoO2正极和PEO电解质在高电压下的副反应.使用这种双层电解质组装的LiCoO2全固态锂电池在0.2 C下循环100次后的容量保持率为75%,显著高于使用PEO/LiTFSI单层电解质的15%. ...
1
... 聚环氧乙烷(PEO)是被研究得最多的一种聚合物电解质,但其高压稳定性差,在高压正极界面处容易氧化,导致容量快速衰减,限制了其在高能量密度全固态电池中的应用[65-66].构建双层固态电解质是实现PEO基SPE在高压锂金属电池中应用的有效方法.Han等[67]开发了一种含双锂盐的双层PEO电解质,如图9所示.主电解质为通过溶液浇铸法制备的PEO/LiTFSI,另外简单地将PEO/LiDFOB溶液滴加到LiCoO2正极表面来构建薄的涂层,降低了电解质与正极之间的界面阻抗.引入的LiDFOB有助于在循环过程中原位形成包含Li x B x O y 和LiF的CEI膜,这有效地抑制了LiCoO2正极和PEO电解质在高电压下的副反应.使用这种双层电解质组装的LiCoO2全固态锂电池在0.2 C下循环100次后的容量保持率为75%,显著高于使用PEO/LiTFSI单层电解质的15%. ...
3
... 聚环氧乙烷(PEO)是被研究得最多的一种聚合物电解质,但其高压稳定性差,在高压正极界面处容易氧化,导致容量快速衰减,限制了其在高能量密度全固态电池中的应用[65-66].构建双层固态电解质是实现PEO基SPE在高压锂金属电池中应用的有效方法.Han等[67]开发了一种含双锂盐的双层PEO电解质,如图9所示.主电解质为通过溶液浇铸法制备的PEO/LiTFSI,另外简单地将PEO/LiDFOB溶液滴加到LiCoO2正极表面来构建薄的涂层,降低了电解质与正极之间的界面阻抗.引入的LiDFOB有助于在循环过程中原位形成包含Li x B x O y 和LiF的CEI膜,这有效地抑制了LiCoO2正极和PEO电解质在高电压下的副反应.使用这种双层电解质组装的LiCoO2全固态锂电池在0.2 C下循环100次后的容量保持率为75%,显著高于使用PEO/LiTFSI单层电解质的15%. ...
... [67]Schematic illustration of the bilayer PEO electrolyte architecture for the LCO based all-solid-state batteries[67]Fig. 9
... Xiang等[83]通过三(五氟苯基)硼烷(TB)添加剂原位聚合1,3-二氧戊环(DOL)来制备聚合物电解质(PDE),如图10(c)~(d)所示.除了引发DOL的阳离子聚合,TB还通过产生氟自由基作为高效阻燃剂,实现电解质的阻燃性,同时具有高氟化物含量的TB有助于形成稳定的富含LiF的SEI膜[图10(a)、(b)].此外,由于TB中的sp2 硼中心与TFSI-的路易斯酸碱相互作用,限制了TFSI-的迁移,提高了电解质的锂离子迁移数.室温下电解质的锂离子迁移数为0.58,离子电导率为1.121 mS/cm.电解质组装的LiFePO4/Li电池表现出优异的循环稳定性,在2 C的倍率下,保持122 mA h/g的容量,循环1200次后容量几乎没有下降. ...
... [83];(b) 具有高离子电导率、稳定SEI、良好界面稳定性和阻燃性的PDE示意图[83];(c) PDE的聚合机理示意图[83];(d) DOL和poly-DOL的结构式[83](a) Schematic diagram of ex situ SPE with low ionic conductivity, unstable SEI, poor interfacial stability and inflammable[83]; (b) Schematic diagram of PDE with high ionic conductivity, stable SEI, good interfacial stability and flame-retardant[83]; (c) Schematic diagram of the polymerization mechanism of PDE[83]; (d) Structure formulas of DOL and poly-DOL[83]Fig. 10
... [83];(c) PDE的聚合机理示意图[83];(d) DOL和poly-DOL的结构式[83](a) Schematic diagram of ex situ SPE with low ionic conductivity, unstable SEI, poor interfacial stability and inflammable[83]; (b) Schematic diagram of PDE with high ionic conductivity, stable SEI, good interfacial stability and flame-retardant[83]; (c) Schematic diagram of the polymerization mechanism of PDE[83]; (d) Structure formulas of DOL and poly-DOL[83]Fig. 10
... [83];(d) DOL和poly-DOL的结构式[83](a) Schematic diagram of ex situ SPE with low ionic conductivity, unstable SEI, poor interfacial stability and inflammable[83]; (b) Schematic diagram of PDE with high ionic conductivity, stable SEI, good interfacial stability and flame-retardant[83]; (c) Schematic diagram of the polymerization mechanism of PDE[83]; (d) Structure formulas of DOL and poly-DOL[83]Fig. 10
... [83](a) Schematic diagram of ex situ SPE with low ionic conductivity, unstable SEI, poor interfacial stability and inflammable[83]; (b) Schematic diagram of PDE with high ionic conductivity, stable SEI, good interfacial stability and flame-retardant[83]; (c) Schematic diagram of the polymerization mechanism of PDE[83]; (d) Structure formulas of DOL and poly-DOL[83]Fig. 10
... [83]; (b) Schematic diagram of PDE with high ionic conductivity, stable SEI, good interfacial stability and flame-retardant[83]; (c) Schematic diagram of the polymerization mechanism of PDE[83]; (d) Structure formulas of DOL and poly-DOL[83]Fig. 10