Compressed carbon dioxide energy storage (CCES), a new type of compressed gas energy storage technology, has the advantages of high energy storage density, low economic cost, long operation life, negative carbon emissions, etc. It is suitable for large-scale, long-term energy storage systems for construction and sustainable development in China and has a broad development prospect. This paper intuitively shows the advantages of a CCES system compared with a compressed air energy storage system. It introduces the operation principle, system performance, and applicable scenarios of cross-critical, supercritical, and liquid CCES system. Similarly, this paper also expounds on the influence of key operating parameters on the system performance and its improvement method, and further introduces the improved system and improvement effect of CCES coupled to other external energy systems. Finally, the advantages and development direction of the CCES system is analyzed. This paper aims to summarize the current research results of CCES technology, point out its advantages and disadvantages, guide subsequent scholars to study the CCES systems, and provide reference for the experiment and demonstration of CCES systems.
Keywords:compressed carbon dioxide energy storage
;
energy storage technology
;
system performance
储能系统具有提高常规发电、输电安全性和经济性的作用,也是满足可再生能源大规模接入的重要手段。现阶段的系统装机容量分布如图3所示,这些储能技术由于成本、容量、安全、能量密度以及环境因素等原因,只有抽水储能和压缩空气储能得以实现长时、大规模商业应用[10]。目前,抽水储能因其70%~85%的高储能效率在世界上占据了主导地位[11]。据估计,全球该系统的装机容量约为165 GW[12]。但抽水储能与传统的压缩空气储能因对地理条件要求高、储能密度低、建设周期长等问题,不满足当前我国储能发展的需要。近年来,研究人员针对压缩空气储能系统作出改进,提出了绝热压缩空气储能系统(adiabatic compressed air energy storage system,A-CAES)、液态空气储能(liquid air energy storage system,LAES)以及超临界压缩空气储能(super-critical compressed air energy storage system,S-CAES)[13-14],提高储能密度和系统效率,在一定程度上减少地理条件的限制。但由于空气自身物理性质的局限性,其超临界态压力和液化压力较高且液化温度较低,无论是空气还是蓄冷材料都存在储存难度大的问题,导致系统在设计选型以及热量匹配上与实际情况差距明显,很难实现储能效率、储能密度以及建设可行性上的同步提升,从而限制了系统的进一步发展[15]。
压缩二氧化碳储能系统(compressed carbon dioxide energy storage,CCES)的工作原理如图4所示。在储能阶段,富裕的电能驱动压缩机得到高温高压的二氧化碳,高温高压二氧化碳在冷却器通过介质带走热量将其冷却,并将热量储存到储热罐,换热后的二氧化碳进入高压二氧化碳储罐中储存;释能时,高压二氧化碳被来自储热罐中的高温介质加热,换热后的介质进入储冷罐储存,高温高压二氧化碳驱动膨胀机透平做功,对外输出电能,做功后的二氧化碳重新回到低压储罐储存,准备进入下一个循环[19]。
XI J P. Following the past, start a new journey of global response to climate change-a speech at the Climate Abstellar Summit[J]. Belt and Road Report (Chinese and English), 2021, 27(1): 20-21.
NYAMDASH B, DENNY E, O'MALLEY M. The viability of balancing wind generation with large scale energy storage[J]. Energy Policy, 2010, 38(11): 7200-7208.
WU H W, WANG J, GONG Y L, et al. Development status and application prospect analysis of energy storage technology[J]. Journal of Electric Power, 2021, 36(5): 434-443.
VILANOVA M R N, FLORES A T, BALESTIERI J A P. Pumped hydro storage plants: A review[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(8): 1-14.
HUNT J D, BYERS E, WADA Y, et al. Global resource potential of seasonal pumped hydropower storage for energy and water storage[J]. Nature Communications, 2020, 11: 947.
YU Q H, WANG Q C, TAN X, et al. A review of compressed-air energy storage[J]. Journal of Renewable and Sustainable Energy, 2019, 11(4): doi: 10.1063/1.5095969.
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268.
KANTHARAJ B, GARVEY S, PIMM A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air[J]. Sustainable Energy Technologies and Assessments, 2015, 11: 159-164.
ALAMI A H, HAWILI A A, HASSAN R, et al. Experimental study of carbon dioxide as working fluid in a closed-loop compressed gas energy storage system[J]. Renewable Energy, 2019, 134: 603-611.
ZHU R, HAN B C, DONG K, et al. A review of carbon dioxide disposal technology in the converter steelmaking process[J].International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1421-1429.
FU L P, REN Z K, SI W Z, et al. Research progress on CO2 capture and utilization technology[J]. Journal of CO2 Utilization, 2022, 66: doi: 10.1016/j.jcou.2022.102260.
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296.
HAN Y, LI R, SUN S C, et al. Research progress of multi-energy coupling technology for compressed air energy storage+[J]. Energy Research & Utilization, 2022(3): 25-29.
HE Q, LIU H, HAO Y P, et al. Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis[J]. Renewable Energy, 2018, 127: 835-849.
HAN Z H, GUO S C, WANG S, et al. Investigation of characteristics of compressed gas energy storage system under different working mediums and gas storage chambers[J]. Acta Energiae Solaris Sinica, 2020, 41(9): 29-35.
ZHANG Y, YANG K, HONG H, et al. Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid[J]. Renewable Energy, 2016, 99: 682-697.
YU H. Numerical simulation of compressed carbon dioxide energy storage system in deep aquifer[D]. Changsha: Changsha University of Science & Technology, 2019.
LI Y, YU H, TANG D, et al. A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods[J]. Renewable Energy, 2022, 187: 1130-1153.
LIU H. Study on thermodynamic characteristics and thermal economy of supercritical compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2017.
HE Q, HAO Y P, LIU W Y. Thermodynamic analysis and improvement of novel trans-critical compressed carbon dioxide energy storage system[J]. Journal of North China Electric Power University, 2020, 47(5): 93-101.
ZHANG X R, WANG G B. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid[J]. International Journal of Energy Research, 2017, 41(10): 1487-1503.
XU W P, ZHAO P, LIU A J, et al. Design and off-design performance analysis of a liquid carbon dioxide energy storage system integrated with low-grade heat source[J]. Applied Thermal Engineering, 2023, 228: doi: 10.1016/j.applthermaleng.2023. 120570.
LIU Q S, GE J, HUANG B H, et al. Influence of energy storage pressure on the characteristics of liquid air energy storage system[J]. Journal of Xi'an Jiaotong University, 2019, 53(11): 1-9.
LIU Z, LIU Z H, XIN X, et al. Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis[J]. Applied Energy, 2020, 269: doi: 10.1016/j.apenergy.2020. 115067.
BORRI E, TAFONE A, ROMAGNOLI A, et al. A review on liquid air energy storage: History, state of the art and recent developments[J]. Renewable and Sustainable Energy Reviews, 2021, 137: doi: 10.1016/j.rser.2020.110572.
WANG M K, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91: 812-823.
WANG M K, ZHAO P, YANG Y, et al. Performance analysis of energy storage system based on liquid carbon dioxide with different configurations[J]. Energy, 2015, 93: 1931-1942.
WU C, WAN Y K, LIU Y, et al. Thermodynamic simulation and economic analysis of a novel liquid carbon dioxide energy storage system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105544.
LIU S C, WU S C, HU Y K, et al. Comparative analysis of air and CO2 as working fluids for compressed and liquefied gas energy storage technologies[J]. Energy Conversion and Management, 2019, 181: 608-620.
YANG Z, CHEN H S, WANG L, et al. Influence of thermal energy storage on performance of supercritical air energy storage system[J]. Electric Power Construction, 2016, 37(8): 33-37.
WANG J, CAO J J, ZHANG L Y, et al. Review on application of cold storage and heat storage technology based on distributed energy system[J]. Energy Storage Science and Technology, 2020, 9(6): 1847-1857.
SUN W X, LIU X, YANG X Q, et al. Design and thermodynamic performance analysis of a new liquid carbon dioxide energy storage system with low pressure stores[J]. Energy Conversion and Management, 2021, 239: doi: 10.1016/j.enconman.2021. 114227.
TANG B, SUN L, XIE Y H. Comprehensive performance evaluation and optimization of a liquid carbon dioxide energy storage system with heat source[J]. Applied Thermal Engineering, 2022, 215: doi: 10.1016/j.applthermaleng.2022.118957.
LI Y P. Thermodynamic performance analysis of compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2018.
LI Y P, XU Y J, LI B, et al. Research on transcritical carbon dioxide energy storage system[J]. Proceedings of the CSEE, 2018, 38(21): 6367-6374.
XU M J, WANG X, WANG Z H, et al. Preliminary design and performance assessment of compressed supercritical carbon dioxide energy storage system[J]. Applied Thermal Engineering, 2021, 183: doi: 10.1016/j.applthermaleng.2020.116153.
ZHANG J J, ZHOU S N, SONG W J, et al. Performance analysis of a compressed liquid carbon dioxide energy storage system[J]. Energy Procedia, 2018, 152: 168-173.
LU C, HE Q, HAO Y P, et al. Thermodynamic analysis and efficiency improvement of trans-critical compressed carbon dioxide energy storage system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105480.
TSATSARONIS G, MOROSUK T. Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas[J]. Energy, 2010, 35(2): 820-829.
LI L X, XU Y J, YIN Z, et al. Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1824-1834.
LIU Z, LIU Z H, YANG X Q, et al. Advanced exergy and exergoeconomic analysis of a novel liquid carbon dioxide energy storage system[J]. Energy Conversion and Management, 2020, 205: doi: 10.1016/j.enconman.2019.112391.
ZHANG Y, YAO E R, WANG T Y. Comparative analysis of compressed carbon dioxide energy storage system and compressed air energy storage system under low-temperature conditions based on conventional and advanced exergy methods[J]. Journal of Energy Storage, 2021, 35: doi: 10.1016/j.est.2021.102274.
ZHANG Y, LIANG T Y, YANG K. An integrated energy storage system consisting of compressed carbon dioxide energy storage and organic Rankine cycle: Exergoeconomic evaluation and multi-objective optimization[J]. Energy, 2022, 247: doi: 10.1016/j.energy.2022.123566.
CAO Z, DENG J Q, ZHOU S H, et al. Research on the feasibility of compressed carbon dioxide energy storage system with underground sequestration in antiquated mine goaf[J]. Energy Conversion and Management, 2020, 211: doi: 10.1016/j.enconman.2020.112788.
CHAE Y J, LEE J I. Thermodynamic analysis of compressed and liquid carbon dioxide energy storage system integrated with steam cycle for flexible operation of thermal power plant[J]. Energy Conversion and Management, 2022, 256: doi: 10.1016/j.enconman.2022.115374.
YAN X S, WANG X D, HAN X, et al. Study on coupling scheme of liquid compressed carbon dioxide energy storage system and thermal power unit[J]. Thermal Power Generation, 2023, 52(2): 90-100.
HAO Y P. Study on thermodynamic characteristics and technical economy of transcritical compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2021.
TAO F Y, WANG H R, LI R X, et al. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling[J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501.
FU H L, HE Q, SONG J T, et al. Thermodynamic of a novel solar heat storage compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2021, 247: doi: 10.1016/j.enconman.2021.114757.
XU M J, ZHAO P, HUO Y W, et al. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system[J]. Journal of Cleaner Production, 2020, 242: doi: 10.1016/j.jclepro.2019. 118437.
... 储能系统具有提高常规发电、输电安全性和经济性的作用,也是满足可再生能源大规模接入的重要手段.现阶段的系统装机容量分布如图3所示,这些储能技术由于成本、容量、安全、能量密度以及环境因素等原因,只有抽水储能和压缩空气储能得以实现长时、大规模商业应用[10].目前,抽水储能因其70%~85%的高储能效率在世界上占据了主导地位[11].据估计,全球该系统的装机容量约为165 GW[12].但抽水储能与传统的压缩空气储能因对地理条件要求高、储能密度低、建设周期长等问题,不满足当前我国储能发展的需要.近年来,研究人员针对压缩空气储能系统作出改进,提出了绝热压缩空气储能系统(adiabatic compressed air energy storage system,A-CAES)、液态空气储能(liquid air energy storage system,LAES)以及超临界压缩空气储能(super-critical compressed air energy storage system,S-CAES)[13-14],提高储能密度和系统效率,在一定程度上减少地理条件的限制.但由于空气自身物理性质的局限性,其超临界态压力和液化压力较高且液化温度较低,无论是空气还是蓄冷材料都存在储存难度大的问题,导致系统在设计选型以及热量匹配上与实际情况差距明显,很难实现储能效率、储能密度以及建设可行性上的同步提升,从而限制了系统的进一步发展[15]. ...
1
... 储能系统具有提高常规发电、输电安全性和经济性的作用,也是满足可再生能源大规模接入的重要手段.现阶段的系统装机容量分布如图3所示,这些储能技术由于成本、容量、安全、能量密度以及环境因素等原因,只有抽水储能和压缩空气储能得以实现长时、大规模商业应用[10].目前,抽水储能因其70%~85%的高储能效率在世界上占据了主导地位[11].据估计,全球该系统的装机容量约为165 GW[12].但抽水储能与传统的压缩空气储能因对地理条件要求高、储能密度低、建设周期长等问题,不满足当前我国储能发展的需要.近年来,研究人员针对压缩空气储能系统作出改进,提出了绝热压缩空气储能系统(adiabatic compressed air energy storage system,A-CAES)、液态空气储能(liquid air energy storage system,LAES)以及超临界压缩空气储能(super-critical compressed air energy storage system,S-CAES)[13-14],提高储能密度和系统效率,在一定程度上减少地理条件的限制.但由于空气自身物理性质的局限性,其超临界态压力和液化压力较高且液化温度较低,无论是空气还是蓄冷材料都存在储存难度大的问题,导致系统在设计选型以及热量匹配上与实际情况差距明显,很难实现储能效率、储能密度以及建设可行性上的同步提升,从而限制了系统的进一步发展[15]. ...
1
... 储能系统具有提高常规发电、输电安全性和经济性的作用,也是满足可再生能源大规模接入的重要手段.现阶段的系统装机容量分布如图3所示,这些储能技术由于成本、容量、安全、能量密度以及环境因素等原因,只有抽水储能和压缩空气储能得以实现长时、大规模商业应用[10].目前,抽水储能因其70%~85%的高储能效率在世界上占据了主导地位[11].据估计,全球该系统的装机容量约为165 GW[12].但抽水储能与传统的压缩空气储能因对地理条件要求高、储能密度低、建设周期长等问题,不满足当前我国储能发展的需要.近年来,研究人员针对压缩空气储能系统作出改进,提出了绝热压缩空气储能系统(adiabatic compressed air energy storage system,A-CAES)、液态空气储能(liquid air energy storage system,LAES)以及超临界压缩空气储能(super-critical compressed air energy storage system,S-CAES)[13-14],提高储能密度和系统效率,在一定程度上减少地理条件的限制.但由于空气自身物理性质的局限性,其超临界态压力和液化压力较高且液化温度较低,无论是空气还是蓄冷材料都存在储存难度大的问题,导致系统在设计选型以及热量匹配上与实际情况差距明显,很难实现储能效率、储能密度以及建设可行性上的同步提升,从而限制了系统的进一步发展[15]. ...
1
... 储能系统具有提高常规发电、输电安全性和经济性的作用,也是满足可再生能源大规模接入的重要手段.现阶段的系统装机容量分布如图3所示,这些储能技术由于成本、容量、安全、能量密度以及环境因素等原因,只有抽水储能和压缩空气储能得以实现长时、大规模商业应用[10].目前,抽水储能因其70%~85%的高储能效率在世界上占据了主导地位[11].据估计,全球该系统的装机容量约为165 GW[12].但抽水储能与传统的压缩空气储能因对地理条件要求高、储能密度低、建设周期长等问题,不满足当前我国储能发展的需要.近年来,研究人员针对压缩空气储能系统作出改进,提出了绝热压缩空气储能系统(adiabatic compressed air energy storage system,A-CAES)、液态空气储能(liquid air energy storage system,LAES)以及超临界压缩空气储能(super-critical compressed air energy storage system,S-CAES)[13-14],提高储能密度和系统效率,在一定程度上减少地理条件的限制.但由于空气自身物理性质的局限性,其超临界态压力和液化压力较高且液化温度较低,无论是空气还是蓄冷材料都存在储存难度大的问题,导致系统在设计选型以及热量匹配上与实际情况差距明显,很难实现储能效率、储能密度以及建设可行性上的同步提升,从而限制了系统的进一步发展[15]. ...
1
... 储能系统具有提高常规发电、输电安全性和经济性的作用,也是满足可再生能源大规模接入的重要手段.现阶段的系统装机容量分布如图3所示,这些储能技术由于成本、容量、安全、能量密度以及环境因素等原因,只有抽水储能和压缩空气储能得以实现长时、大规模商业应用[10].目前,抽水储能因其70%~85%的高储能效率在世界上占据了主导地位[11].据估计,全球该系统的装机容量约为165 GW[12].但抽水储能与传统的压缩空气储能因对地理条件要求高、储能密度低、建设周期长等问题,不满足当前我国储能发展的需要.近年来,研究人员针对压缩空气储能系统作出改进,提出了绝热压缩空气储能系统(adiabatic compressed air energy storage system,A-CAES)、液态空气储能(liquid air energy storage system,LAES)以及超临界压缩空气储能(super-critical compressed air energy storage system,S-CAES)[13-14],提高储能密度和系统效率,在一定程度上减少地理条件的限制.但由于空气自身物理性质的局限性,其超临界态压力和液化压力较高且液化温度较低,无论是空气还是蓄冷材料都存在储存难度大的问题,导致系统在设计选型以及热量匹配上与实际情况差距明显,很难实现储能效率、储能密度以及建设可行性上的同步提升,从而限制了系统的进一步发展[15]. ...
1
... 储能系统具有提高常规发电、输电安全性和经济性的作用,也是满足可再生能源大规模接入的重要手段.现阶段的系统装机容量分布如图3所示,这些储能技术由于成本、容量、安全、能量密度以及环境因素等原因,只有抽水储能和压缩空气储能得以实现长时、大规模商业应用[10].目前,抽水储能因其70%~85%的高储能效率在世界上占据了主导地位[11].据估计,全球该系统的装机容量约为165 GW[12].但抽水储能与传统的压缩空气储能因对地理条件要求高、储能密度低、建设周期长等问题,不满足当前我国储能发展的需要.近年来,研究人员针对压缩空气储能系统作出改进,提出了绝热压缩空气储能系统(adiabatic compressed air energy storage system,A-CAES)、液态空气储能(liquid air energy storage system,LAES)以及超临界压缩空气储能(super-critical compressed air energy storage system,S-CAES)[13-14],提高储能密度和系统效率,在一定程度上减少地理条件的限制.但由于空气自身物理性质的局限性,其超临界态压力和液化压力较高且液化温度较低,无论是空气还是蓄冷材料都存在储存难度大的问题,导致系统在设计选型以及热量匹配上与实际情况差距明显,很难实现储能效率、储能密度以及建设可行性上的同步提升,从而限制了系统的进一步发展[15]. ...