Lithium iron phosphate (LiFePO4) is one of the most widely used cathode materials in lithium-ion-based electric vehicles and energy storage batteries. To meet the market demand for high-energy-density lithium-ion batteries, high-energy-density LiFePO4 products must be developed. According to the definition, energy density depends on the following three aspects: the voltage plateau, powder compacted density, and mass specific capacity. Based on electrochemistry and materials science, increasing the powder compacted density and mass specific capacity is a promising modification direction; however, voltage plateau is an intrinsic characteristic of LiFePO4. Based on technical experience, market research reports, and previous research, the choice of raw materials, the modification of the sintering process, and particle gradation are the best modification methods for increasing powder compacted density. In the iron phosphate route, impurities are the primary issue in sintering processes; thus, different procedures for particle gradation are proposed. Considering mass specific capacity, the following strategies are proposed based on the intrinsic characteristics of LiFePO4: nanosizing, carbon coating, elemental doping, defect control, and crystallographic preferred orientation. Moreover, nanosizing, carbon coating, and elemental doping are the most effective modification methods for increasing mass specific capacity. Usually, nanosizing and carbon coating are combined for increasing electronic conductivity, whereas elemental doping is mostly used for increasing Li-ion diffusion coefficient and preferred orientation. These modification methods are used in LiFePO4 products available in the market and are confirmed by domestic battery factories. However, the energy density of LiFePO4 has not yet been maximized; hence, additional methods for modifying the material properties and production processes need to be developed.
Keywords:lithium iron phosphate
;
high energy density
;
powder compacted density
;
capacity
;
modified methods
LI Miao. Design of high-energy-density LiFePO4 cathode materials[J]. Energy Storage Science and Technology, 2023, 12(7): 2045-2058
1997年,John. B. Goodenough等人首次发表磷酸铁锂(LiFePO4)的研究成果,证明这种材料中的Li能够可逆地脱出/嵌入。与更早被研究的钴酸锂(LiCoO2)和锰酸锂(LiMn2O4)相比,LiFePO4中的Fe、P元素产量更大、价格更低,而且材料本身无毒性,对环境友好,适合大规模生产和应用,尤其适合作为需求量巨大、安全性要求高的动力类或储能类锂电池的正极材料[1-2]。
要从工作电压方面入手,首先必须明确LiFePO4活性材料的电化学反应机理。如图2所示,LiFePO4在电池中的电化学反应机理与LiCoO2、LiMn2O4不同,在完整的Li含量(0≤x≤1)范围内,Li x FePO4有两个低吉布斯自由能的稳定相,即贫Li相Li α FePO4和富Li相Li β FePO4。因此,其在电池中充放电的过程中,主要表现为两相扩散机制(含有少量的单相固溶体扩散),在很宽的Li含量范围(通常为0.05≤x≤0.89)内Li x FePO4都只有一个数值固定的电化学反应平台,能够提供稳定的工作电压[4]。
LIU X S, WANG Y J, BARBIELLINI B, et al. Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation[J]. Physical Chemistry Chemical Physics, 2015, 17(39): 26369-26377.
VAN DER VEN A, BHATTACHARYA J, BELAK A A. Understanding Li diffusion in Li-intercalation compounds[J]. Accounts of Chemical Research, 2013, 46(5): 1216-1225.
DOMPABLO A D, ARMAND M, TARASCON J M, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni)[J]. Electrochemistry Communications, 2006, 8(8): 1292-1298.
GUTIERREZ A, BENEDEK N A, MANTHIRAM A. Crystal-chemical guide for understanding redox energy variations of M2+/3+ couples in polyanion cathodes for lithium-ion batteries[J]. Chemistry of Materials, 2013, 25(20): 4010-4016.
ZHAO B, JIANG Y, ZHANG H, et al. Morphology and electrical properties of carbon coated LiFePO4 cathode materials[J]. Journal of Power Sources, 2009, 189(1): 462-466.
TIAN R Y, LIU H Q, JIANG Y, et al. Drastically enhanced high-rate performance of carbon-coated LiFePO4 nanorods using a green chemical vapor deposition (CVD) method for lithium ion battery: A selective carbon coating process[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11377-11386.
SALAH A Ait, MAUGER A, JULIEN C M, et al. Nano-sized impurity phases in relation to the mode of preparation of LiFePO4[J]. Materials Science and Engineering: B, 2006, 129(1/2/3): 232-244.
RHO Y H, NAZAR L F, PERRY L, et al. Surface chemistry of LiFePO4 studied by Mössbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties[J]. Journal of the Electrochemical Society, 2007, 154(4): A283.
HU C, YI H, FANG H, et al. Suppressing Li3PO4 impurity formation in LiFePO4/Fe2P by a nonstoichiometry synthesis and its effect on electrochemical properties[J]. Materials Letters, 2011, 65(9): 1323-1326.
WU S H, SHIU J J, LIN J Y. Effects of Fe2P and Li3PO4 additives on the cycling performance of LiFePO4/C composite cathode materials[J]. Journal of Power Sources, 2011, 196(16): 6676-6681.
YIN Y, GAO M, PAN H, et al. High-rate capability of LiFePO4 cathode materials containing Fe2P and trace carbon[J]. Journal of Power Sources, 2012, 199: 256-262.
ZHANG L, TANG Y, LIU Z, et al. Synthesis of Fe2P coated LiFePO4 nanorods with enhanced Li-storage performance[J]. Journal of Alloys and Compounds, 2015, 627: 132-135.
DHINDSA K S, KUMAR A, NAZRI G A, et al. Enhanced electrochemical performance of LiFePO4/C nanocomposites due to in situ formation of Fe2P impurities[J]. Journal of Solid State Electrochemistry, 2016, 20(8): 2275-2282.
HE L H, XU S M, ZHAO Z W. Suppressing the formation of Fe2P: Thermodynamic study on the phase diagram and phase transformation for LiFePO4 synthesis[J]. Energy, 2017, 134: 962-967.
LIU Y L, LIU J, WANG J J, et al. Formation of size-dependent and conductive phase on lithium iron phosphate during carbon coating[J]. Nature Communications, 2018, 9: 929.
MALIK R, ABDELLAHI A, CEDER G. A critical review of the Li insertion mechanisms in LiFePO4 electrodes[J]. Journal of the Electrochemical Society, 2013, 160(5): A3179-A3197.
SUN C W, RAJASEKHARA S, GOODENOUGH J B, et al. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode[J]. Journal of the American Chemical Society, 2011, 133(7): 2132-2135.
YUAN L X, WANG Z H, ZHANG W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(2): 269-284.
WANG Y G, HE P, ZHOU H S. Olivine LiFePO4: Development and future[J]. Energy & Environmental Science, 2011, 4(3): 805-817.
ZHOU X F, WANG F, ZHU Y M, et al. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21(10): 3353-3358.
MAROM R, AMALRAJ S F, LEIFER N, et al. A review of advanced and practical lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21(27): 9938-9954.
SU L W, JING Y, ZHOU Z. Li ion battery materials with core-shell nanostructures[J]. Nanoscale, 2011, 3(10): 3967-3983.
ZHANG Weijun. Structure and performance of LiFePO4 cathode materials: A review[J]. Journal of Power Sources, 2011, 196(6): 2962-2970.
YI T F, LI X Y, LIU H P, et al. Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery[J]. Ionics, 2012, 18(6): 529-539.
WANG J J, SUN X L. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(1): 5163-5185.
ZHANG Y, HUO Q Y, DU P P, et al. Advances in new cathode material LiFePO4 for lithium-ion batteries[J]. Synthetic Metals, 2012, 162(13/14): 1315-1326.
HU B L H, WU F Y, LIN C T, et al. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity[J]. Nature Communications, 2013, 4: 1687.
BI Z Y, ZHANG X D, HE W, et al. Recent advances in LiFePO4 nanoparticles with different morphology for high-performance lithium-ion batteries[J]. RSC Advances, 2013, 3(43): 19744-19751.
KUCINSKIS G, BAJARS G, KLEPERIS J. Graphene in lithium ion battery cathode materials: A review[J]. Journal of Power Sources, 2013, 240: 66-79.
WANG J J, SUN X L. Olivine LiFePO4: The remaining challenges for future energy storage[J]. Energy & Environmental Science, 2015, 8(4): 1110-1138.
PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery-A low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807.
ALI EFTEKHARI. LiFePO4/C nanocomposites for lithium-ion batteries[J]. Journal of Power Sources, 2017, 343: 395-411.
WANG X F, FENG Z J, HUANG J T. Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries[J]. Carbon, 2018, 127: 149-157.
AN Q, SUN X H, GUO J Z, et al. Review-Key strategies to increase the rate capacity of cathode materials for high power lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(14): 140528.
CHEN S P, LV D, CHEN J, et al. Review on defects and modification methods of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Fuels, 2022, 36(3): 1232-1251.
ZAGHIB K, GUERFI A, HOVINGTON P, et al. Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends[J]. Journal of Power Sources, 2013, 232: 357-369.
LIU H, TANG D. The low cost synthesis of nanoparticles LiFePO4/C composite for lithium rechargeable batteries[J]. Solid State Ionics, 2008, 179(33/34): 1897-1901.
KONAROVA M, TANIGUCHI I. Physical and electrochemical properties of LiFePO4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling[J]. Journal of Power Sources, 2009, 194(2): 1029-1035.
WASER O, R BÜCHEL, HINTENNACH A, et a. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries[J]. Journal of Aerosol Science, 2011, 42(10): 657-667.
WANG F Q, CHEN J, WU M H, et al. Propylene oxide-assisted fast Sol-gel synthesis of mesoporous and nano-structured LiFePO4/C cathode materials[J]. Ionics, 2013, 19(3): 451-460.
QIU Y J, GENG Y H, YU J, et al. High-capacity cathode for lithium-ion battery from LiFePO4/(C + Fe2P) composite nanofibers by electrospinning[J]. Journal of Materials Science, 2014, 49(2): 504-509.
WU Y F, LIU Y N, GUO S W, et al. Hierarchical carbon-coated LiFePO4 nano-grain microspheres with high electrochemical performance as cathode for lithium ion batteries[J]. Journal of Power Sources, 2014, 256: 336-344.
LIU Z L, ZHANG X H, HONG L. Preparation and electrochemical properties of spherical LiFePO4 and LiFe0.9Mg0.1PO4 cathode materials for lithium rechargeable batteries[J]. Journal of Applied Electrochemistry, 2009, 39(12): 2433-2438.
SONG J J, ZHANG Y, SHAO G J. Comparing the electrochemical performance of LiFePO4/C modified by Mg doping and MgO coating[J]. Journal of Nanomaterials, 2013, 2013: 1-8.
FANG H, LIANG G, ZHAO L, et al. Synthesis and characterization of Ti doped lithium iron phosphate[J]. ECS Transactions, 2013, 45(29): 11-21.
CUI Y, WANG M, GUO R S. High rate performance of LiFePO4 cathode materials co-doped with C and Ti4+ by microwave synthesis[J]. Bulletin of Materials Science, 2009, 32(6): 579-582.
HUANG W Q, CHENG Q, QIN X. Effect of Li excess content and Ti dopants on electrochemical properties of LiFePO4 prepared by thermal reduction method[J]. Russian Journal of Electrochemistry, 2010, 46(3): 359-362.
PIETRZAK T K, WASIUCIONEK M, GORZKOWSKA I, et al. Novel vanadium-doped olivine-like nanomaterials with high electronic conductivity[J]. Solid State Ionics, 2013, 251: 40-46.
HARRISON K L, BRIDGES C A, PARANTHAMAN M P, et al. Temperature dependence of aliovalent-vanadium doping in LiFePO4 cathodes[J]. Chemistry of Materials, 2013, 25(5): 768-781.
WANG G X, BEWLAY S, YAO J, et al. Characterization of LiMxFe1–xPO4 (M=Mg, Zr, Ti) cathode materials prepared by the Sol-gel method[J]. Electrochemical and Solid-State Letters, 2004, 7(12): A503.
HU Y Q, DOEFF M M, KOSTECKI R, et al. Electrochemical performance of Sol-gel synthesized LiFePO4 in lithium batteries[J]. Journal of the Electrochemical Society, 2004, 151(8): A1279.
ABBATE M, LALA S M, MONTORO L A, et al. Ti-, Al-, and Cu-doping induced gap states in LiFePO4[J]. Electrochemical and Solid-State Letters, 2005, 8(6): A288.
XU Y, YU J G, PENG S, et al. Preparation and electrochemical properties of homogeneous carbon-coated LiFe0.9Mn0.1PO4 as cathode material for lithium-ion batteries[J]. Journal of the Brazilian Chemical Society, 2012, 23(7): 1298-1304.
TRINH D V, NGUYEN M T T, DANG H T M, et al. Hydrothermally synthesized nanostructured LiMnxFe1-xPO4 (x=0-0.3) cathode materials with enhanced properties for lithium-ion batteries[J]. Scientific Reports, 2021, 11: 12280.
TRIWIBOWO J, PRIYONO S, PURAWIARDI R I, et al. Electrochemical performance of LiFe(1-x)MnxPO4 (x=0, 0.10, 0.15, 0.2) synthesized by solid state process as cathode material for Li-ion battery[C]//AIP Conference Proceedings. Jatinangor, Indonesia. AIP Publishing LLC, 2016.
LIU L, CAO Z, CUI Y, et al. Nanocomposites LiMnxFe1-xPO4/C synthesized via freeze drying assisted Sol-gel routine and their magnetic and electrochemical properties[J]. Journal of Alloys and Compounds, 2019, 779: 339-346.
WANG L, LI Y, DAI Y, et al. Effect of Mn content on electrochemical performance and energy density of LiFe1-xMnxPO4/C[J]. Vacuum, 2022, 196: 110730.
TU J G, WU K, TANG H, et al. Mg-Ti co-doping behavior of porous LiFePO4 microspheres for high-rate lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(32): 17021-17028.
YUAN H, WANG X, WU Q, et al. Effects of Ni and Mn doping on physicochemical and electrochemical performances of LiFePO4/C[J]. Journal of Alloys and Compounds, 2016, 675: 187-194.
HUANG Y, XU Y, YANG X. Enhanced electrochemical performances of LiFePO4/C by co-doping with magnesium and fluorine[J]. Electrochimica Acta, 2013, 113: 156-163.
LV Y J, HUANG B, TAN J X, et al. Enhanced low temperature electrochemical performances of LiFePO4/C by V3+ and F- co-doping[J]. Materials Letters, 2018, 229: 349-352.
SHU H, WANG X, WEN W, et al. Effective enhancement of electrochemical properties for LiFePO4/C cathode materials by Na and Ti co-doping[J]. Electrochimica Acta, 2013, 89: 479-487.
HU C W, LEE C H, WU P J. Study on the dynamics of a vanadium doped LiFePO4 lithium-ion battery using quasi-elastic neutron scattering technique[J]. Journal of the Chinese Chemical Society, 2021, 68(3): 507-511.
MEETHONG N, HUANG H Y S, CARTER W C, et al. Size-dependent lithium miscibility gap in nanoscale Li1–xFePO4[J]. Electrochemical and Solid-State Letters, 2007, 10(5): A134.
DELMAS C, MACCARIO M, CROGUENNEC L, et al. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model[J]. Nature Materials, 2008, 7(8): 665-671.
WAGEMAKER M, MULDER F M. Properties and promises of nanosized insertion materials for Li-ion batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1206-1215.
BAI P, COGSWELL D A, BAZANT M Z. Suppression of phase separation in LiFePO4 nanoparticles during battery discharge[J]. Nano Letters, 2011, 11(11): 4890-4896.
TANG K, YU X Q, SUN J P, et al. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS[J]. Electrochimica Acta, 2011, 56(13): 4869-4875.
WAGEMAKER M, SINGH D P, BORGHOLS W J H, et al. Dynamic solubility limits in nanosized olivine LiFePO4[J]. Journal of the American Chemical Society, 2011, 133(26): 10222-10228.
BAZANT M Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics[J]. Accounts of Chemical Research, 2013, 46(5): 1144-1160.
LOVE C T, KOROVINA A, PATRIDGE C J, et al. Review of LiFePO4 phase transition mechanisms and new observations from X-ray absorption spectroscopy[J]. Journal of the Electrochemical Society, 2013, 160(5): A3153-A3161.
SHAPIRO D A, YU Y S, TYLISZCZAK T, et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy[J]. Nature Photonics, 2014, 8(10): 765-769.
LIU H, STROBRIDGE F C, BORKIEWICZ O J, et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes[J]. Science, 2014, 344(6191): e1252817.
WAGEMAKER M, MULDER F M. Properties and promises of nanosized insertion materials for Li-ion batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1206-1215.
LIU Z, HUANG X. Factors that affect activation energy for Li diffusion in LiFePO4: A first-principles investigation[J]. Solid State Ionics, 2010, 181(19/20): 907-913.
MOLENDA J, OJCZYK W, WIERCZEK K. Diffusional mechanism of deintercalation in LiFe1-yMnyPO4 cathode material[J]. Solid State Ionics, 2006, 177(26/27/28/29/30/31/32): 2617-2624.
ARAVINDAN V, GNANARAJ J, LEE Y S, et al. LiMnPO4-A next generation cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(11): 3518-3539.
SHANG S L, WANG Y, MEI Z G, et al. Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M=Mn, Fe, Co, and Ni): A comparative first-principles study[J]. Journal of Materials Chemistry, 2012, 22(3): 1142-1149.
DELL'ERA A, PASQUALI M, BAUER E, et al. Synthesis, characterization, and electrochemical behavior of LiMnxFe(1–x)PO4 composites obtained from phenylphosphonate-based organic-inorganic hybrids[J]. Materials, 2017, 11(1): 56.
CHANG L J, BI X L, LUO S H, et al. Investigation on structural and electrochemical properties of olivine-structured LiMn1–xFexPO4/C cathode materials based on first-principles calculation[J]. Journal of the Electrochemical Society, 2022, 169(1): 010508.
LI Y C, XING B Y, WANG Z G, et al. Constructing a hierarchical LiMn0.8Fe0.2PO4/C cathode via comodification of Li3PO4 and graphite for high-performance lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(9): 10983-10993.
SONG Z Y, CHEN S L, DU S, et al. Construction of high-performance LiMn0.8Fe0.2PO4/C cathode by using quinoline soluble substance from coal pitch as carbon source for lithium ion batteries[J]. Journal of Alloys and Compounds, 2022, 927: 166921.
ZENG T T, HU Z, ZHOU Z Y, et al. Boron-catalyzed graphitization carbon layer enabling LiMn0.8Fe0.2PO4 cathode superior kinetics and Li-storage properties[J]. Small Methods, 2023, 7(2): 2201390.
ZENG T T, LIU D H, FAN C L, et al. LiMn0.8Fe0.2PO4@C cathode prepared via a novel hydrated MnHPO4 intermediate for high performance lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2023, 10(4): 1164-1175.
WU B, GAO W L. LiMn0.7Fe0.3PO4 nanorods grown on graphene sheets synthesized in situ by modified microwave-assisted solvothermal method as high-performance cathode materials[J]. Journal of Materials Science, 2018, 53(6): 4433-4443.
TRINH N D, AI Z W, LIANG G, et al. Structural changes in electrochemically cycled LiMn0.7Fe0.3PO4[J]. Solid State Ionics, 2018, 324: 33-39.
AN L W, LIU H, LIU Y Y, et al. The best addition of graphene to LiMn0.7Fe0.3PO4/C cathode material synthesized by wet ball milling combined with spray drying method[J]. Journal of Alloys and Compounds, 2018, 767: 315-322.
GUO Z J, CHEN Z L. Microwave-assisted solvothermal synthesis and performances of LiMn0.7Fe0.3PO4 nanoplates[J]. Materials and Manufacturing Processes, 2018, 33(8): 813-816.
SONG Y, LIU Y, OU X. Heat-rate-controlled hydrothermal crystallization of high-performance LiMn0.7Fe0.3PO4 cathode material for lithium-ion batteries[J]. Ceramics International, 2020, 46(4): 5069-5076.
DING D, MAEYOSHI Y, KUBOTA M, et al. Highly improved performances of LiMn0.7Fe0.3PO4 cathode with in situ electrochemically reduced graphene oxide[J]. Journal of Alloys and Compounds, 2019, 793: 627-634.
DING D, MAEYOSHI Y, KUBOTA M, et al. Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4 composite cathode for high-performance lithium batteries[J]. Journal of Power Sources, 2020, 449: 227553.
XIONG Y L, WEI Y, RONG W Y, et al. Preparation and electrochemical properties of carbon-coated LiMn0.6Fe0.4PO4 cathode material for lithium-ion batteries[J]. ECS Journal of Solid State Science and Technology, 2022, 11(11): 113001.
MINNETTI L, MARANGON V, HASSOUN J. Synthesis and characterization of a LiFe0.6Mn0.4PO4 olivine cathode for application in a new lithium polymer battery[J]. Advanced Sustainable Systems, 2022, 6(5): 2100464.
ZHANG B C, MENG W, GONG Y F, et al. [001]-oriented LiMn0.6Fe0.4PO4/C nanorod microspheres contributing high-rate performance to olivine-structured cathode for lithium-ion battery[J]. Materials Today Energy, 2022, 30: 101162.
DATHAR G K P, SHEPPARD D, STEVENSON K J, et al. Calculations of Li-ion diffusion in olivine phosphates[J]. Chemistry of Materials, 2011, 23(17): 4032-4037.
KANDHASAMY S, NALLATHAMBY K, MINAKSHI M. Role of structural defects in olivine cathodes[J]. Progress in Solid State Chemistry, 2012, 40(1/2): 1-5.
LIU H, CHOE M J, ENRIQUE R A, et al. Effects of antisite defects on Li diffusion in LiFePO4 revealed by Li isotope exchange[J]. The Journal of Physical Chemistry C, 2017, 121(22): 12025-12036.
HONG L, YANG K Q, TANG M. A mechanism of defect-enhanced phase transformation kinetics in lithium iron phosphate olivine[J]. NPJ Computational Materials, 2019, 5: 118.
TANG M, BELAK J F, DORR M R. Anisotropic phase boundary morphology in nanoscale olivine electrode particles[J]. The Journal of Physical Chemistry C, 2011, 115(11): 4922-4926.
LIU F Q, SIDDIQUE N A, MUKHERJEE P P. Nonequilibrium phase transformation and particle shape effect in LiFePO4 materials for Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2011, 14(10): A143.
XIAO P H, HENKELMAN G. Kinetic Monte Carlo study of Li intercalation in LiFePO4[J]. ACS Nano, 2018, 12(1): 844-851.
LI Z J, YANG J X, LI C J, et al. Orientation-dependent lithium miscibility gap in LiFePO4[J]. Chemistry of Materials, 2018, 30(3): 874-878.
... 1997年,John. B. Goodenough等人首次发表磷酸铁锂(LiFePO4)的研究成果,证明这种材料中的Li能够可逆地脱出/嵌入.与更早被研究的钴酸锂(LiCoO2)和锰酸锂(LiMn2O4)相比,LiFePO4中的Fe、P元素产量更大、价格更低,而且材料本身无毒性,对环境友好,适合大规模生产和应用,尤其适合作为需求量巨大、安全性要求高的动力类或储能类锂电池的正极材料[1-2]. ...
... 1997年,John. B. Goodenough等人首次发表磷酸铁锂(LiFePO4)的研究成果,证明这种材料中的Li能够可逆地脱出/嵌入.与更早被研究的钴酸锂(LiCoO2)和锰酸锂(LiMn2O4)相比,LiFePO4中的Fe、P元素产量更大、价格更低,而且材料本身无毒性,对环境友好,适合大规模生产和应用,尤其适合作为需求量巨大、安全性要求高的动力类或储能类锂电池的正极材料[1-2]. ...
... 1997年,John. B. Goodenough等人首次发表磷酸铁锂(LiFePO4)的研究成果,证明这种材料中的Li能够可逆地脱出/嵌入.与更早被研究的钴酸锂(LiCoO2)和锰酸锂(LiMn2O4)相比,LiFePO4中的Fe、P元素产量更大、价格更低,而且材料本身无毒性,对环境友好,适合大规模生产和应用,尤其适合作为需求量巨大、安全性要求高的动力类或储能类锂电池的正极材料[1-2]. ...
... 1997年,John. B. Goodenough等人首次发表磷酸铁锂(LiFePO4)的研究成果,证明这种材料中的Li能够可逆地脱出/嵌入.与更早被研究的钴酸锂(LiCoO2)和锰酸锂(LiMn2O4)相比,LiFePO4中的Fe、P元素产量更大、价格更低,而且材料本身无毒性,对环境友好,适合大规模生产和应用,尤其适合作为需求量巨大、安全性要求高的动力类或储能类锂电池的正极材料[1-2]. ...
... [6]Discharge potential values for the M2+/3+ redox couples in polyanion cathode materials (included experimental and predicted values)[6]Fig. 31.1 提高粉体压实密度