A review of numerical models for composite lithium metal anodes
LI Lingxuan,1,2,3, WANG Zixuan1,2,3, ZHAO Chenzi,3, ZHANG Rui4, LU Yang3, HUANG Jiaqi1,2, CHEN Aibing5, ZHANG Qiang3
1.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
2.Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
3.Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
4.Beijing Huairou Laboratory, Beijing 101400, China
5.College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
Lithium metal has extremely high specific capacity and very low redox electrode potential, which is one of the key energy materials in the field of secondary batteries. However, the metal lithium anode faces challenges such as volume expansion and uneven lithium deposition. Introducing a three-dimensional framework into the lithium metal anode to construct a composite lithium anode is an effective method to mitigate volume expansion and regulate lithium deposition. However, the composition and structure of composite lithium anode are very complex, the influencing factors of electrochemical reactions are strongly coupled with each other. With the advancements of physical and chemical models and significant improvements in computational capabilities, numerical modeling analysis has become a valuable tool to investigate the physical chemistry principles within composite lithium anodes. Firstly, the main process mechanisms of composite lithium metal anode and the development process of physicochemical models are summarized. Then quantitative models of the electrochemical mass transfer processes are introduced, including surface electric fields and ion fields in the composite lithium anode. And the progresses made in analyzing and controlling the dynamic evolution of lithium deposition morphology using phase field models or finite element models are overviewed. Finally, the structural stability of the composite lithium metal anode during the cycling process is analyzed from the perspective of the mechano-electrochemistry. These quantitative modeling efforts reveal the electrochemical principles of lithium anodes and drive the efficient screening and optimization design of composite lithium anodes.
Keywords:lithium metal batteries
;
composite lithium metal anodes
;
theoretical simulation
;
mass transfer
;
morphology evolution
Fig. 3
Simulation of lithium ion flux distribution in electrodes and schematic diagram of the simulation structure[91] (a) Simulation of lithium ion flux distribution in planar electrodes; (b) Simulation of lithium ion flux distribution in nanochannel electrodes of 3.5 μm; (c) Simulation cell geometry for the case with nanochannel electrodes. Scale bars: 400 nm
Fig. 4
Morphology study of Li metal deposited on the porous Cu with different pore sizes at deposition capacity of 0.3 mAh/cm2 [94] (a) radius is 5 μm; (b) radius is 7.5 μm; (c) radius is 10 μm
Fig. 6
(a) Depth distribution of lithium metal deposition; (b) Time evolution curve of deposition capacity in pores; (c) Activation overpotential required for constant current lithium deposition; (d) Proportion of lithium metal in pores and average activation overpotential under different strategies at 600 s[74]
Fig. 7
Phase field simulations of the galvanostatic lithium plating and stripping processes[63](a)—(c) Lithium dendrite growth at 0, 240.0, and 480.0 s, respectively, with a platingcurrent density of 10 mA/cm2; (d)—(f) Dead lithium formation process at 0, 240.0, and 404.8 s, with a stripping current density of 10 mA/cm2
Fig. 8
The interfacial evolution principle during Li stripping and the actual condition of morphology evolution[125] (a) the site energy evolution after void injection by DFT calculations; (b) The void evolution regulated by the current-stripping areal capacity and current density; (c) The schematic of micro-scopic evolution in different void accumulation circumstances
Fig. 9
The pressure shaping effect on the Li dendrite growth in electrolytes of elastic moduli ranging from 0.5 to 2.0 GPa. The applied external pressure is fixed at 6.0 MPa [130] (a) the snapshots of dendritic morphology at a plating capacity of 0.40 mAh/cm2; (b) The current density evolution with the proceeding of electroplating; (c) The space utilization in different electrolytes; (d) The phase diagram based on the applied external pressure and the elastic modulus of electrolyte at a plating capacity of 0.4 mAh/cm2. The gray portion denotes that the external pressure fails to work
Fig. 10
(a) The distribution of von Mises stress in the host filled with PAN polymer during Li plating; (b) Schematic illustration for the boundary displacement of PAN during Li plating and stripping; (c) Young’s modulus of PAN during the process of deformation[130]
ZHANG X Q, ZHAO C Z, HUANG J Q, et al. Recent advances in energy chemical engineering of next-generation lithium batteries[J]. Engineering, 2018, 4(6): 831-847.
TIAN Y, LIN C, CHEN X, et al. Reversible lithium plating on working anodes enhances fast charging capability in low-temperature lithium-ion batteries[J]. Energy Storage Materials, 2023, 56: 412-423.
LIU H, CHENG X B, CHONG Y, et al. Advanced electrode processing of lithium ion batteries: A review of powder technology in battery fabrication[J]. Particuology, 2021, 57: 56-71.
LIU D H, BAI Z Y, LI M, et al. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives[J]. Chemical Society Reviews, 2020, 49(15): 5407-5445.
LIU B, ZHANG J G, XU W. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833-845.
STARK J K, DING Y, KOHL P A. Nucleation of electrodeposited lithium metal: Dendritic growth and the effect of co-deposited sodium[J]. Journal of the Electrochemical Society, 2013, 160(9): D337-D342.
XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537.
ZHANG H M, LIAO X B, GUAN Y P, et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode[J]. Nature Communications, 2018, 9: 3729.
HAN Y Y, LIU B, XIAO Z, et al. Interface issues of lithium metal anode forhigh-energy batteries: Challenges, strategies, and perspectives[J]. InfoMat, 2021, 3(2): 155-174.
GAO M D, LI H, XU L, et al. Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges[J]. Journal of Energy Chemistry, 2021, 59: 666-687.
ZHU G L, ZHAO C Z, YUAN H, et al. Liquid phase therapy with localized high-concentration electrolytes for solid-state Li metal pouch cells[J]. Acta Physico Chimica Sinica, 2020: 2005003.
ZHANG X Q, CHEN X, CHENG X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angewandte Chemie (International Ed in English), 2018, 57(19): 5301-5305.
ZHANG W D, WU Q A, HUANG J X, et al. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries[J]. Advanced Materials, 2020, 32(24): 2001740.
ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252.
FAN X L, CHEN L, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8): 715-722.
SHI P, LIU Z Y, ZHANG X Q, et al. Polar interaction of polymer host-solvent enables stable solid electrolyte interphase in composite lithium metal anodes[J]. Journal of Energy Chemistry, 2022, 64: 172-178.
XIAO Y, XU R, YAN C, et al. Waterproof lithium metal anode enabled by cross-linking encapsulation[J]. Science Bulletin, 2020, 65(11): 909-916.
LIU S F, JI X A, YUE J E, et al. High interfacial-energy interphase promoting safe lithium metal batteries[J]. Journal of the American Chemical Society, 2020, 142(5): 2438-2447.
LI N W, SHI Y, YIN Y X, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angewandte Chemie International Edition, 2018, 57(6): 1505-1509.
LI T, SHI P, ZHANG R, et al. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior[J]. Nano Research, 2019, 12(9): 2224-2229.
WANG C W, GONG Y H, LIU B Y, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Letters, 2017, 17(1): 565-571.
ZHANG Y, LUO W, WANG C W, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(14): 3584-3589.
WANG H S, LIN D C, LIU Y Y, et al. Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework[J]. Science Advances, 2017, 3(9): e1701301.
LIU Y Y, LIN D C, LIANG Z, et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode[J]. Nature Communications, 2016, 7: 10992.
LIN D C, LIU Y Y, LIANG Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nature Nanotechnology, 2016, 11(7): 626-632.
LIANG Z, LIN D C, ZHAO J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11): 2862-2867.
SHEN X, CHENG X B, SHI P, et al. Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries[J]. Journal of Energy Chemistry, 2019, 37: 29-34.
SHI P, LI T, ZHANG R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Advanced Materials, 2019, 31(8): e1807131.
LI Q, ZHU S P, LU Y Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries[J]. Advanced Functional Materials, 2017, 27(18): 1606422.
YE H A, ZHENG Z J, YAO H R, et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries[J]. Angewandte Chemie International Edition, 2019, 58(4): 1094-1099.
YANG C P, XIE H A, PING W W, et al. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries[J]. Advanced Materials, 2019, 31(3): 1804815.
CHANG J, SHANG J, SUN Y M, et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium[J]. Nature Communications, 2018, 9: 4480.
LIU K, KONG B, LIU W, et al. Stretchable lithium metal anode with improved mechanical and electrochemical cycling stability[J]. Joule, 2018, 2(9): 1857-1865.
LI T, LIU H, SHI P, et al. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries[J]. Rare Metals, 2018, 37(6): 449-458.
YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6: 8058.
YUE X Y, WANG W W, WANG Q C, et al. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries[J]. Energy Storage Materials, 2018, 14: 335-344.
WAN M T, KANG S J, WANG L, et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode[J]. Nature Communications, 2020, 11: 829.
PAN L H, LUO Z F, ZHANG Y T, et al. Seed-free selective deposition of lithium metal into tough graphene framework for stable lithium metal anode[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44383-44389.
CHAZALVIEL J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1990, 42(12): 7355-7367.
SHEN X, ZHANG R, CHENG X B, et al. Recent progress on in situ observation and growth mechanism of lithium metal dendrites[J]. Energy Storage Science and Technology, 2017, 6(3): 418-432.
CHENG X B, HOU T Z, ZHANG R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Advanced Materials, 2016, 28(15): 2888-2895.
LIU J, YUAN H, CHENG X B, et al. A review of naturally derived nanostructured materials for safe lithium metal batteries[J]. Materials Today Nano, 2019, 8: 100049.
LIU J A, YUAN H, LIU H, et al. Unlocking the failure mechanism of solid state lithium metal batteries[J]. Advanced Energy Materials, 2022, 12(4): 2100748.
LIU Q, YU J H, GUO W Q, et al. Boosting the Li|LAGP interfacial compatibility with trace nonflammable all-fluorinated electrolyte: The role of solid electrolyte interphase[J]. EcoMat, 2023, 5(4): 12322.
LIU H, CHENG X B, YAN C, et al. A perspective on energy chemistry of low-temperature lithium metal batteries[J]. iEnergy, 2022, 1(1): 72-81.
ZHANG J, QIAO J S, SUN K N, et al. Balancing particle properties for practical lithium-ion batteries[J]. Particuology, 2022, 61: 18-29.
ZHANG L S, CHEN S Y, WANG W T, et al. Enabling dendrite-free charging for lithium batteries based on transport-reaction competition mechanism in CHAIN framework[J]. Journal of Energy Chemistry, 2022, 75: 408-421.
MA Q T, SUN X W, LIU P, et al. Bio-inspired stable lithium-metal anodes by co-depositing lithium with a 2D vermiculite shuttle[J]. Angewandte Chemie (International Ed in English), 2019, 58(19): 6200-6206.
WANG S H, YIN Y X, ZUO T T, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels[J]. Advanced Materials, 2017, 29(40): 1703729.
ZHANG L H, YIN X G, SHEN S B, et al. Simultaneously homogenized electric field and ionic flux for reversible ultrahigh-areal-capacity Li deposition[J]. Nano Letters, 2020, 20(8): 5662-5669.
ZHANG R, SHEN X, CHENG X B, et al. The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation?[J]. Energy Storage Materials, 2019, 23: 556-565.
SMITH R B, BAZANT M Z. Multiphase porous electrode theory[J]. Journal of the Electrochemical Society, 2017, 164(11): E3291-E3310.
FOROOZAN T, SOTO F A, YURKIV V, et al. Synergistic effect of graphene oxide for impeding the dendritic plating of Li[J]. Advanced Functional Materials, 2018, 28(15): 1705917.
TIAN H K, LIU Z, JI Y Z, et al. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes[J]. Chemistry of Materials, 2019, 31(18): 7351-7359.
CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385.
ZHANG R, SHEN X, ZHANG Y T, et al. Dead lithium formation in lithium metal batteries: A phase field model[J]. Journal of Energy Chemistry, 2022, 71: 29-35.
CHEN H Y, LI M X, LI C P, et al. Electrospun carbon nanofibers for lithium metal anodes: Progress and perspectives[J]. Chinese Chemical Letters, 2022, 33(1): 141-152.
WANG D, ZHOU H, JIAO Y, et al. Understanding and performance prediction of ions-intercalation electrochemistry: From crystal field theory to ligand field theory[J]. Energy Storage Science and Technology, 2022, 11(2): 409-433.
CHENG X B, YAN C, ZHANG X Q, et al. Electronic and ionic channels in working interfaces of lithium metal anodes[J]. ACS Energy Letters, 2018, 3(7): 1564-1570.
YANG S J, XU X Q, CHENG X B, et al. Columnar lithium metal deposits: The role of non-aqueous electrolyte additive[J]. Acta Physico Chimica Sinica, 2020: 2007058.
ZHAO C Z, DUAN H, HUANG J Q, et al. Designing solid-state interfaces on lithium-metal anodes: A review[J]. Science China Chemistry, 2019, 62(10): 1286-1299.
FU Z H, CHEN X A, ZHAO C Z, et al. Stress regulation on atomic bonding and ionic diffusivity: Mechanochemical effects in sulfide solid electrolytes[J]. Energy & Fuels, 2021, 35(12): 10210-10218.
MONROE C, NEWMAN J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): A396.
MONROE C, NEWMAN J. The effect of interfacial deformation on electrodeposition kinetics[J]. Journal of the Electrochemical Society, 2004, 151(6): A880.
GOLMON S, MAUTE K, DUNN M L. Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries[J]. Computers & Structures, 2009, 87(23/24): 1567-1579.
ZHANG R, SHEN X, JU H T, et al. Driving lithium to deposit inside structured lithium metal anodes: A phase field model[J]. Journal of Energy Chemistry, 2022, 73: 285-291.
ARYANFAR A, BROOKS D, MERINOV B V, et al. Dynamics of lithium dendrite growth and inhibition: Pulse charging experiments and Monte Carlo calculations[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1721-1726.
PARK J, JEONG J, LEE Y J, et al. Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries[J]. Advanced Materials Interfaces, 2016, 3(11): 1600140.
LI G X, LIU Z, WANG D W, et al. Electrokinetic phenomena enhanced lithium-ion transport in leaky film for stable lithium metal anodes[J]. Advanced Energy Materials, 2019, 9(22): 1900704.
NADKARNI N, ZHOU T T, FRAGGEDAKIS D, et al. Modeling the metal-insulator phase transition in LixCoO2 for energy and information storage[J]. Advanced Functional Materials, 2019, 29(40): 1902821.
SHIBUTA Y, OKAJIMA Y, SUZUKI T. Phase-field modeling for electrodeposition process[J]. Science and Technology of Advanced Materials, 2007, 8(6): 511-518.
LI B Q, CHEN X R, CHEN X A, et al. Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes[J]. Research, 2019, 2019: 1-11.
LIU W, LIN D C, PEI A, et al. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement[J]. Journal of the American Chemical Society, 2016, 138(47): 15443-15450.
CAO Z, Li B, YANG S. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays [J]. Advanced Materials, 2019, 31(29): 1901310.
LEE J, WON E S, KIM D M, et al. Three-dimensional porous frameworks for Li metal batteries: Superconformal versus conformal Li growth[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 33056-33065.
CHEN Y Q, YUE M, LIU C L, et al. Long cycle life lithium metal batteries enabled with upright lithium anode[J]. Advanced Functional Materials, 2019, 29(15): 1806752.
ZOU P C, WANG Y, CHIANG S W, et al. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries[J]. Nature Communications, 2018, 9: 464.
ZHANG R, CHEN X R, CHEN X A, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2017, 56(27): 7764-7768.
CHEN X, CHEN X R, HOU T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Science Advances, 2019, 5(2): eaau7728.
MA X X, CHEN X A, BAI Y K, et al. The defect chemistry of carbon frameworks for regulating the lithium nucleation and growth behaviors in lithium metal anodes[J]. Small, 2021, 17(48): 2007142.
YAN K, LU Z D, LEE H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy, 2016, 1: 16010.
SUN S, ZHAO C Z, YUAN H, et al. Multiscale understanding of high-energy cathodes in solid-state batteries: From atomic scale to macroscopic scale[J]. Materials Futures, 2022, 1(1): 012101.
LIU S F, XIA X H, ZHONG Y, et al. 3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode[J]. Advanced Energy Materials, 2018, 8(8): 1702322.
YUE X Y, LI X L, BAO J A, et al. "Top-down" Li deposition pathway enabled by an asymmetric design for Li composite electrode[J]. Advanced Energy Materials, 2019, 9(35): 1901491.
LU Y, ZHAO C Z, ZHANG R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes[J]. Science Advances, 2021, 7(38): eabi5520.
CHEN A L, GAO M Y, MO L L, et al. Homogeneous electric field and Li+ flux regulation in three-dimensional nanofibrous composite framework for ultra-long-life lithium metal anode[J]. Journal of Colloid and Interface Science, 2022, 614: 138-146.
ZHENG H F, ZHANG Q F, CHEN Q L, et al. 3D lithiophilic-lithiophobic-lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode[J]. Journal of Materials Chemistry A, 2020, 8(1): 313-322.
ZOU P C, CHIANG S W, ZHAN H C, et al. A periodic "self-correction" scheme for synchronizing lithium plating/stripping at ultrahigh cycling capacity[J]. Advanced Functional Materials, 2020, 30(21): 1910532.
YUN J, PARK B K, WON E S, et al. Bottom-up lithium growth triggered by interfacial activity gradient on porous framework for lithium-metal anode[J]. ACS Energy Letters, 2020, 5(10): 3108-3114.
ZHANG C, WANG D, LEI C, et al. Effect of major factors on lithium dendrite growth studied by phase field modeling[J]. Journal of the Electrochemical Society, 2023, 170(5): 052506.
MA X X, SHEN X, CHEN X A, et al. The origin of fast lithium-ion transport in the inorganic solid electrolyte interphase on lithium metal anodes[J]. Small Structures, 2022, 3(8): 2200071.
SHI P, ZHANG X Q, SHEN X, et al. A review of composite lithium metal anode for practical applications[J]. Advanced Materials Technologies, 2020, 5(1): 1900806.
XU R, XIAO Y, ZHANG R, et al. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries[J]. Advanced Materials, 2019, 31(19): 1808392.
SHEN X, ZHANG R, WANG S H, et al. The dynamic evolution of aggregated lithium dendrites in lithium metal batteries[J]. Chinese Journal of Chemical Engineering, 2021, 37: 137-143.
HUANG F Y, JIE Y L, LI X P, et al. Correlation between Li plating morphology and reversibility of Li metal anode[J]. Acta Physico Chimica Sinica, 2020: 2008081.
TAKAGISHI Y, YAMAUE T. Mathematical modeling of multiple-Li-dendrite growth in Li-ion battery electrodes[J]. Journal of the Electrochemical Society, 2023, 170(3): 030528.
LI Y J, SHA L T, ZHANG G, et al. Phase-field simulation tending to depict practical electrodeposition process in lithium-based batteries[J]. Chinese Chemical Letters, 2023, 34(2): 107993.
ZHANG Y T, CHEN Z X, SONG Y W, et al. Lithium (poly)sulfide phase conversion in working lithium-sulfur batteries: The insight from the equilibrium potential model[J]. ACS Energy Letters, 2023, 8(6): 2674-2681.
GAO L T, HUANG P Y, GUO Z S. Critical role of pits in suppressing Li dendrites revealed by continuum mechanics simulation and in situ experiment[J]. Journal of the Electrochemical Society, 2022, 169(6): 060522.
TANTRATIAN K, CAO D X, ABDELAZIZ A, et al. Stable Li metal anode enabled by space confinement and uniform curvature through lithiophilic nanotube arrays[J]. Advanced Energy Materials, 2020, 10(5): 1902819.
HAO F, VISHNUGOPI B S, VERMA A, et al. Mechanistic insight into lithium electrodeposition in porous host architectures[J]. The Journal of Physical Chemistry C, 2021, 125(46): 25369-25375.
XU B Q, ZHAI H W, LIAO X B, et al. Porous insulating matrix for lithium metal anode with long cycling stability and high power[J]. Energy Storage Materials, 2019, 17: 31-37.
CHEN X R, YAN C, DING J F, et al. New insights into "dead lithium" during stripping in lithium metal batteries[J]. Journal of Energy Chemistry, 2021, 62: 289-294.
LIANG Z, YAN K, ZHOU G M, et al. Composite lithium electrode with mesoscale skeleton via simple mechanical deformation[J]. Science Advances, 2019, 5(3): eaau5655.
SHEN X, ZHANG R, ZHAO C Z, et al. Recent advances in mechano-electrochemistry in lithium metal batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2781-2797.
SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J]. Advanced Energy Materials, 2021, 11(10): 2003416.
SHEN X, ZHANG R, SHI P, et al. The dead lithium formation under mechano-electrochemical coupling in lithium metal batteries[J]. Fundamental Research, 2022: doi: 10.1016/j.fmre. 2022.11.005.
LIU Y Y, XU X Y, JIAO X X, et al. Role of interfacial defects on electro-chemo-mechanical failure of solid-state electrolyte[J]. Advanced Materials, 2023, 35(24): 2301152.
CARMONA E A, ALBERTUS P. Modeling how interface geometry and mechanical stress affect Li metal/solid electrolyte current distributions[J]. Journal of the Electrochemical Society, 2023, 170(2): 020524.
SHI P, ZHANG X Q, SHEN X, et al. A pressure self-adaptable route for uniform lithium plating and stripping in composite anode[J]. Advanced Functional Materials, 2021, 31(5): 2004189.
SHEN X, ZHANG R, CHEN X A, et al. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength?[J]. Advanced Energy Materials, 2020, 10(10): 1903645.
SHIN H R, YUN J, EOM G H, et al. Mechanistic and nanoarchitectonics insight into Li-host interactions in carbon hosts for reversible Li metal storage[J]. Nano Energy, 2022, 95: 106999.
ZHAO Y, WANG R Z, MARTÍNEZ-PAÑEDA E. A phase field electro-chemo-mechanical formulation for predicting void evolution at the Li-electrolyte interface in all-solid-state batteries[J]. Journal of the Mechanics and Physics of Solids, 2022, 167: 104999.
... [63](a)~(c) 电流密度为10 mA/cm2 时,锂枝晶在0、240.0、480.0 s时的生长情况;(d)~(f) 电流密度为10 mA/cm2 时,锂枝晶在0、240.0、404.8.0 s时的死锂生成过程Phase field simulations of the galvanostatic lithium plating and stripping processes[63](a)—(c) Lithium dendrite growth at 0, 240.0, and 480.0 s, respectively, with a platingcurrent density of 10 mA/cm2; (d)—(f) Dead lithium formation process at 0, 240.0, and 404.8 s, with a stripping current density of 10 mA/cm2Fig. 7
... [63](a)—(c) Lithium dendrite growth at 0, 240.0, and 480.0 s, respectively, with a platingcurrent density of 10 mA/cm2; (d)—(f) Dead lithium formation process at 0, 240.0, and 404.8 s, with a stripping current density of 10 mA/cm2Fig. 7
... [74](a) Depth distribution of lithium metal deposition; (b) Time evolution curve of deposition capacity in pores; (c) Activation overpotential required for constant current lithium deposition; (d) Proportion of lithium metal in pores and average activation overpotential under different strategies at 600 s[74]Fig. 6
... [91](a) 平面电极中的锂离子通量分布;(b) 纳米通道电极中的锂离子通量分布;(c) 纳米通道电极的模拟结构示意图Simulation of lithium ion flux distribution in electrodes and schematic diagram of the simulation structure[91] (a) Simulation of lithium ion flux distribution in planar electrodes; (b) Simulation of lithium ion flux distribution in nanochannel electrodes of 3.5 μm; (c) Simulation cell geometry for the case with nanochannel electrodes. Scale bars: 400 nmFig. 32.1.2 电子通道设计
... [91] (a) Simulation of lithium ion flux distribution in planar electrodes; (b) Simulation of lithium ion flux distribution in nanochannel electrodes of 3.5 μm; (c) Simulation cell geometry for the case with nanochannel electrodes. Scale bars: 400 nmFig. 32.1.2 电子通道设计
Morphology study of Li metal deposited on the porous Cu with different pore sizes at deposition capacity of 0.3 mAh/cm2 [94] (a) radius is 5 μm; (b) radius is 7.5 μm; (c) radius is 10 μmFig. 4
... [105]Simulation of lithium concentration distribution and phase change of Li x In alloy during lithiation at current density of 5 mA/cm2 [105]Fig. 5
... [125](a) 通过DFT计算空穴进入后的位点能量演化;(b) 电流剥离面积容量和电流密度调节的空穴演变;(c) 不同孔隙堆积环境下的微观演化示意图The interfacial evolution principle during Li stripping and the actual condition of morphology evolution[125] (a) the site energy evolution after void injection by DFT calculations; (b) The void evolution regulated by the current-stripping areal capacity and current density; (c) The schematic of micro-scopic evolution in different void accumulation circumstancesFig. 82.3 力-电化学场耦合模型
... [125] (a) the site energy evolution after void injection by DFT calculations; (b) The void evolution regulated by the current-stripping areal capacity and current density; (c) The schematic of micro-scopic evolution in different void accumulation circumstancesFig. 82.3 力-电化学场耦合模型
... [130](a) 沉积容量为0.4 mAh/cm2 时的锂沉积形貌;(b) 电流密度随沉积过程的演变;(c) 不同电解质中的空间利用率;(d) 0.4 mAh/cm2 容量下施加的外压与电解质弹性模量的相图.灰色区域表示外压几乎不起作用The pressure shaping effect on the Li dendrite growth in electrolytes of elastic moduli ranging from 0.5 to 2.0 GPa. The applied external pressure is fixed at 6.0 MPa [130] (a) the snapshots of dendritic morphology at a plating capacity of 0.40 mAh/cm2; (b) The current density evolution with the proceeding of electroplating; (c) The space utilization in different electrolytes; (d) The phase diagram based on the applied external pressure and the elastic modulus of electrolyte at a plating capacity of 0.4 mAh/cm2. The gray portion denotes that the external pressure fails to workFig. 9
... [130] (a) the snapshots of dendritic morphology at a plating capacity of 0.40 mAh/cm2; (b) The current density evolution with the proceeding of electroplating; (c) The space utilization in different electrolytes; (d) The phase diagram based on the applied external pressure and the elastic modulus of electrolyte at a plating capacity of 0.4 mAh/cm2. The gray portion denotes that the external pressure fails to workFig. 9
... [130](a) The distribution of von Mises stress in the host filled with PAN polymer during Li plating; (b) Schematic illustration for the boundary displacement of PAN during Li plating and stripping; (c) Young’s modulus of PAN during the process of deformation[130]Fig. 10