Rapid development of portable devices, electric vehicles, and energy storage power stations has led to the increasing need of optimizing the cost, cycling life, charging time, and safety of lithium-ion batteries (LIBs). Gas generation during cycling and storage causes volume expansion and electrode/separator dislocation, which can increase electrochemical polarization and lead to decreased battery lifespan or safety hazards. Herein, we summarize the mechanisms with respect to the primary gases that evolve in LIBs, including oxygen, hydrogen, alkenes, alkanes, and carbon oxide, and describe the effect of operating temperature, voltage window, and electrode materials on gas generation. We also describe the relationship between this gas generation and LIB performance. We further propose several electrolyte-based strategies that focus on increasing the stability of the electrolyte and electrode/electrolyte interface. Specifically, the electrolyte stability is increased by employing functional additives to scavenge trace water, hydrofluoric acid, and active oxygen species, reducing the proportion of cyclic carbonates, and by using fluorinated solvents in the electrolyte. The adoption of film-forming additives can effectively improve the stability of the electrode/electrolyte interface, suppressing gas generation. In addition, we discuss the challenges and urgent issues related to gas generation in LIBs and provide unique perspectives on the intrinsic mechanism for developing increasingly efficient gas-suppression methods.
XU Chong. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133
Fig. 1
(a), (b) Schematic for the diffusion of R-H+ from cathode to anode and the effect of temperature and voltage on the evolution of H2[25]; (c) Generation of H2 by a "double crossover-double catalysis" process during solvent decomposition[38] and (d) through chemical reaction between PVDF and Li dendrites on lithiated graphite anode[24]
Fig. 5
(a) Main generation mechanism of CO2 in lithium-ion battery; (b) Oxidation of conductive carbon under the catalysis of H2O[42]; (c), (d) Generation of CO2 from the decomposition of Li2CO3 on cathodic surface[45, 47]; (e) Two types of solvent oxidation to form CO2[48]
Fig. 6
Cross-talk of (a) O2[18] and (b) reductive gas[19] between cathode and anode in Li-ion battery; (c) The gas composition during thermal runaway, (d) explosion index and (e) Laminar flame-speed for batteries with different cathodes[52]
电池中无法根除的痕量水不仅可以在电极表面发生电化学分解产生气体,还会引发LiPF6逐步水解产生大量HF,破坏SEI界面加速电解液分解[图7(a)][53]。此外水还可以直接攻击SEI界面中的ROCO2Li产生ROH、Li2CO3和CO2气体[54]。常用的除水抑酸类添加剂主要为硅氮烷、硅氧烷、亚磷酸酯以及含氮化合物[图7(b)]。硅氮烷中的Si—N键可以和水反应抑制LiPF6的水解,如三甲基硅基咪唑[55]、三甲基硅基𫫇唑烷酮[56]。硅氧烷中的Si—O键可以与H2O反应生成—(Si—O) n —,或与HF反应生成Si—F键,如二甲基二苯氧基硅烷[57]。亚磷酸酯中的P(Ⅲ)以及含氮化合物中的N原子由于具有孤对电子因而可以络合HF和H2O中的氢原子,如N-乙酰己内酰胺[58]、环戊基异氰酸酯[59],多种官能团的复合则具有更强的除水抑酸效果[60]。
Fig. 7
(a) HF arisen from the hydrolysis of LiPF6[53]; (b) Mechanism of electrolyte additives scavenging H2O and HF in electrolyte; (c) Phosphite and borane as additives scavenging O2 or ·O2-in electrolyte[53]
Fig. 8
(a) Summary of gas generation from solvents in electrolytes; (b) Adopting three types of lithium salts in electrolyte to improve thermal stability of NCM811/Gr pouch cell[63]; (c) EMD(EMC/DMC/DEC)-LiNO3 electrolyte to enhance cycling stability at 2.8~4.4 V in NCM811/Gr cell[64]
Fig. 9
Typical six types of additives forming stable SEI in commercial electrolyte
传统商用添加剂虽然具备优异的成膜特性,但也存在一定缺陷,因而需要开发新型添加剂。PS作为电解液中抑制电池产气效果最优的添加剂,由于致癌性受到欧盟管控,因此我们开发四乙烯基硅烷(TVS)作为替代品,可以参与正负极成膜形成锂离子传导率高的硅烷聚合物,显著抑制电池产气以及高温存储过程中的阻抗增长[图10(a)、(b)][76]。三苯基亚磷酸酯作为商用电解液中优异的除水抑酸添加剂对电池寿命存在劣化效果,使用三呋喃基亚磷酸酯(FuP)作为替代品,可以在保留添加剂除水抑酸功能的同时,优先于溶剂在正负极成膜改善电池高温性能[图10(c)][77]。另一方面,添加剂的合理组合使用可以得到稳固且阻抗低的SEI界面,将有机硫酸酯DTD与无机锂盐LiDFP联用,可以在含LiF和Li x PO y F z 的SEI中引入Li2SO4和ROSO2Li,抑制电池在循环过程中的产气并降低阻抗提升快充性能[图10(d)、(e)][78]。采用LiDFOP与二氧戊环(DOL)联用则可以引发DOL聚合形成富含LiF和Li x PO y F z 的无机-有机复合SEI[图10(f)][79]。
Fig. 10
(a) TVS reduces gas generation in lithium ion battery and; (b) The mechanism of TVS forming films on cathode and anode[76]; (c) Theoretical and practical decomposition potential of FuP[77]; (d) SEI component and (e) volume change of DTD+LiDFP based battery during cycling[78]; (f) Organic-inorganic hybrid SEI induced by a LiDFOP and DOL[79]
WOODY M, ARBABZADEH M, LEWIS G M, et al. Strategies to limit degradation and maximize Li-ion battery service lifetime—Critical review and guidance for stakeholders[J]. Journal of Energy Storage, 2020, 28: doi: 10. 1016/j. est. 2020. 101231.
CHEN X X, LIU K, WANG B G. Research on high-safety electrolytes and their application in lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 583-592.
KONG L C, LI Y, FENG W. Strategies to solve lithium battery thermal runaway: From mechanism to modification[J]. Electrochemical Energy Reviews, 2021, 4(4): 633-679.
HU D Z, SU Y F, CHEN L, et al. The mechanism of side reaction induced capacity fading of Ni-rich cathode materials for lithium ion batteries[J]. Journal of Energy Chemistry, 2021, 58: 1-8.
BAO Y H, HONG G Q, CHEN Y, et al. Customized kirigami electrodes for flexible and deformable lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 780-788.
KWADE A, HASELRIEDER W, LEITHOFF R, et al. Current status and challenges for automotive battery production technologies[J]. Nature Energy, 2018, 3(4): 290-300.
ZHANG S, MA J, HU Z L, et al. Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials[J]. Chemistry of Materials, 2019, 31(16): 6033-6065.
GELDASA F T, KEBEDE M A, SHURA M W, et al. Identifying surface degradation, mechanical failure, and thermal instability phenomena of high energy density Ni-rich NCM cathode materials for lithium-ion batteries: A review[J]. RSC Advances, 2022, 12(10): 5891-5909.
LIANG H B, DU J H, HAO X, et al. A review of current research on the formation mechanism of lithium batteries[J]. Energy Storage Science and Technology, 2021, 10(2): 647-657.
DING J F, XU R, YAN C, et al. A review on the failure and regulation of solid electrolyte interphase in lithium batteries[J]. Journal of Energy Chemistry, 2021, 59: 306-319.
CUI J, SHI C, ZHAO J B. Research progress on the effect of mechanical pressure on the performance of lithium batteries[J]. CIESC Journal, 2021, 72(7): 3511-3523.
ZHANG H M, WANG J, WANG Y B, et al. Multiscale modeling of the SEI of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(2): 366-382.
TAKENAKA N, BOUIBES A, YAMADA Y, et al. Frontiers in theoretical analysis of solid electrolyte interphase formation mechanism[J]. Advanced Materials, 2021, 33(37): 2100574.
HEISKANEN S K, KIM J, LUCHT B L.Generation and evolution of the solid electrolyte interphase of lithium-ion batteries[J]. Joule, 2019, 3(10): 2322-2333.
SHAN X Y, ZHONG Y, ZHANG L J, et al. A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: Challenges and perspectives[J]. The Journal of Physical Chemistry C, 2021, 125(35): 19060-19080.
WANG Y, FENG X N, PENG Y, et al. Reductive gas manipulation at early self-heating stage enables controllable battery thermal failure[J]. Joule, 2022, 6(12): 2810-2820.
JONES P K, STIMMING U, LEE A A. Impedance-based forecasting of lithium-ion battery performance amid uneven usage[J]. Nature Communications, 2022, 13: 4806.
LI B, PAREKH M H, PALANISAMY M, et al. In situ thermal runaway detection in lithium-ion batteries with an integrated internal sensor[J]. ACS Applied Energy Materials, 2020, 3(8): 7997-8008.
LI W F, WANG H W, ZHANG Y J, et al. Flammability characteristics of the battery vent gas: A case of NCA and LFP lithium-ion batteries during external heating abuse[J]. Journal of Energy Storage, 2019, 24: 100775.
SHI S, LYU N W, MA J X, et al. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment[J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462.
METZGER M, STREHLE B, SOLCHENBACH S, et al. Origin of H2 evolution in LIBs: H2O reduction vs. electrolyte oxidation[J]. Journal of the Electrochemical Society, 2016, 163(5): A798-A809.
GALUSHKIN N Е, YAZVINSKAYA N N, GALUSHKIN D N. Mechanism of gases generation during lithium-ion batteries cycling[J]. Journal of the Electrochemical Society, 2019, 166(6): A897-A908.
WANDT J, FREIBERG Ats, OGRODNIK A, et al. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries[J]. Materials Today, 2018, 21(8): 825-833.
ZHANG S S. Understanding of performance degradation of LiNi0.80Co0.10Mn0.10O2 cathode material operating at high potentials[J]. Journal of Energy Chemistry, 2020, 41: 135-141.
ZHANG J X, YANG J W, YANG L M, et al. Exploring the redox decomposition of ethylene carbonate-propylene carbonate in Li-ion batteries[J]. Materials Advances, 2021, 2(5): 1747-1751.
TENG X, ZHAN C, BAI Y, et al. In situ analysis of gas generation in lithium-ion batteries with different carbonate-based electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 22751-22755.
HOBOLD G M, KHURRAM A, GALLANT B M. Operando gas monitoring of solid electrolyte interphase reactions on lithium[J]. Chemistry of Materials, 2020, 32(6): 2341-2352.
RINKEL B L D, VIVEK J P, GARCIA-ARAEZ N, et al. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15(8): 3416-3438.
MAO C Y, RUTHER R E, GENG L X, et al. Evaluation of gas formation and consumption driven by crossover effect in high-voltage lithium-ion batteries with Ni-rich NMC cathodes[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43235-43243.
RENFREW S E, MCCLOSKEY B D. Quantification of surface oxygen depletion and solid carbonate evolution on the first cycle of LiNi0.6Mn0.2Co0.2O2 electrodes[J]. ACS Applied Energy Materials, 2019, 2(5): 3762-3772.
ELLIS L D, ALLEN J P, THOMPSON L M, et al. Quantifying, understanding and evaluating the effects of gas consumption in lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(14): A3518-A3528.
XIE H, HUANG K, DU J Q, et al. Studies on ultrasonic appearance of trace water contamination in lithium-ion battery electrolyte[J]. Energy Storage Science and Technology, 2022, 11(12): 4030-4037
WANG X Q, REN D S, LIANG H M, et al. Ni crossover catalysis: Truth of hydrogen evolution in Ni-rich cathode-based lithium-ion batteries[J]. Energy & Environmental Science, 2023, 16(3): 1200-1209.
LYU Y C, WU X, WANG K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982.
BOULINEAU A, SIMONIN L, COLIN J F, et al. First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries[J]. Nano Letters, 2013, 13(8): 3857-3863.
METZGER M, MARINO C, SICKLINGER J, et al. Anodic oxidation of conductive carbon and ethylene carbonate in high-voltage Li-ion batteries quantified by on-line electrochemical mass spectrometry[J]. Journal of the Electrochemical Society, 2015, 162(7): A1123-A1134.
JUNG R, METZGER M, MAGLIA F, et al. Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon[J]. The Journal of Physical Chemistry Letters, 2017, 8(19): 4820-4825.
RENFREW S E, MCCLOSKEY B D. The role of electrolyte in the first-cycle transformations of LiNi0.6Mn0.2Co0.2O2[J]. Journal of the Electrochemical Society, 2019, 166(13): A2762-A2768.
RAMAKRISHNAN S, PARK B, WU J, et al. Extended interfacial stability through simple acid rinsing in a Li-rich oxide cathode material[J]. Journal of the American Chemical Society, 2020, 142(18): 8522-8531.
RENFREW S E, KAUFMAN L A, MCCLOSKEY B D. Altering surface contaminants and defects influences the first-cycle outgassing and irreversible transformations of LiNi0.6Mn0.2Co0.2O2[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34913-34921.
RENFREW S E, MCCLOSKEY B D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides[J]. Journal of the American Chemical Society, 2017, 139(49): 17853-17860.
JUNG R, METZGER M, MAGLIA F, et al. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1361-A1377.
WU Q S, MCDOWELL M T, QI Y. Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries[J]. Journal of the American Chemical Society, 2023, 145(4): 2473-2484.
DAY R P, XIA J, PETIBON R, et al. Differential thermal analysis of Li-ion cells as an effective probe of liquid electrolyte evolution during aging[J]. Journal of the Electrochemical Society, 2015, 162(14): A2577-A2581.
YANG X W, WANG H W, LI M H, et al. Experimental study on thermal runaway behavior of lithium-ion battery and analysis of combustible limit of gas production[J]. Batteries, 2022, 8(11): 250.
WANG H B, XU H, ZHANG Z L, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190.
HAN J G, KIM K, LEE Y, et al. Scavenging materials: Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries[J]. Advanced Materials, 2019, 31(20): 1804822.
SELF J, AIKEN C P, PETIBON R, et al. Survey of gas expansion in Li-ion NMC pouch cells[J]. Journal of the Electrochemical Society, 2015, 162(6): A796-A802.
WOTANGO A S, SU W N, LEGGESSE E G, et al. Improved interfacial properties of MCMB electrode by 1-(trimethylsilyl)imidazole as new electrolyte additive to suppress LiPF6 decomposition[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2410-2420.
KIM K, HWANG D, KIM S, et al. Cyclic aminosilane-based additive ensuring stable electrode-electrolyte interfaces in Li-ion batteries[J]. Advanced Energy Materials, 2020, 10(15): 2000012.
DENG B W, WANG H, GE W J, et al. Investigating the influence of high temperatures on the cycling stability of a LiNi0.6Co0.2Mn0.2O2 cathode using an innovative electrolyte additive[J]. Electrochimica Acta, 2017, 236: 61-71.
LIU G P, JIAO T P, CHENG Y, et al. Interfacial enhancement of silicon-based anode by a lactam-type electrolyte additive[J]. ACS Applied Energy Materials, 2021, 4(9): 10323-10332.
LIU G P, XU N B, ZOU Y, et al. Stabilizing Ni-rich LiNi0.83Co0.12Mn0.05O2 with cyclopentyl isocyanate as a novel electrolyte additive[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12069-12078.
SONG Y M, KIM C K, KIM K E, et al. Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0.5Mn1 5O4 cathodes[J]. Journal of Power Sources, 2016, 302: 22-30.
YIM T, WOO S G, LIM S H, et al. 5 V-class high-voltage batteries with over-lithiated oxide and a multi-functional additive[J]. Journal of Materials Chemistry A, 2015, 3(11): 6157-6167.
ZHENG J M, XIAO J, GU M, et al. Interface modifications by anion receptors for high energy lithium ion batteries[J]. Journal of Power Sources, 2014, 250: 313-318.
WU Y, REN D S, LIU X, et al. High-voltage and high-safety practical lithium batteries with ethylene carbonate-free electrolyte[J]. Advanced Energy Materials, 2021, 11(47): 2102299.
KANG G H, ZHONG G, MA J B, et al. Weakly solvated EC-free linear alkyl carbonate electrolytes for Ni-rich cathode in rechargeable lithium battery[J]. iScience, 2022, 25(12): 105710.
WANG Y K, LI Z M, HOU Y P, et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries[J]. Chemical Society Reviews, 2023, 52(8): 2713-2763.
FENG M, CHEN N, CHEN R J. Research progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 792-807.
LI Q, LIU X S, HAN X, et al. Identification of the solid electrolyte interface on the Si/C composite anode with FEC as the additive[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14066-14075.
SANG P F, CHEN Q L, WANG D Y, et al. Organosulfur materials for rechargeable batteries: Structure, mechanism, and application[J]. Chemical Reviews, 2023, 123(4): 1262-1326.
MAO S L, WU Q, WANG Z Y, et al. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 538-550.
LIU H D, NAYLOR A J, MENON A S, et al. Understanding the roles of tris(trimethylsilyl) phosphite (TMSPi) in LiNi0.8Mn0.1Co0.1O2 (NMC811)/silicon-graphite (Si-gr) lithium-ion batteries[J]. Advanced Materials Interfaces, 2020, 7(15): 2000277.
HAN S Y, LIU Y, ZHANG H, et al. Succinonitrile as a high-voltage additive in the electrolyte of LiNi0.5Co0.2Mn0.3O2/graphite full batteries[J]. Surface and Interface Analysis, 2020, 52(6): 364-373.
WANG A P, WANG L, LIANG H M, et al. Lithium difluorophosphate as a widely applicable additive to boost lithium-ion batteries: A perspective[J]. Advanced Functional Materials, 2023, 33(8): 2211958.
KANG S, PARK K, PARK S-H, et al. Unraveling the role of LiFSI electrolyte in the superior performance of graphite anodes for Li-ion batteries[J]. Electrochimica Acta, 2018, 259: 949-954.
ZHAN Y J, WU Y D, MA X W, et al. 4.5 V Li-ion battery with a carbonate ester-based electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 319-330.
WANG P, CUI X L, ZHAO D N, et al. Effects of soluble products decomposed from chelato-borate additives on formation of solid electrolyte interface layers[J]. Journal of Power Sources, 2022, 535: doi: 10. 1016/j. jpowsour. 2022. 231451.
JIANG Y Y, SHEN M, SONG B X, et al. Effect of dual-functional electrolyte additive on high temperature and high voltage performance of Li-ion battery[J]. Journal of Inorganic Materials, 2022, 37(7): 710-716.
ZHANG Z H, HU J G, HU Y, et al. Tri(2-furyl)phosphine-induced robust interphases for durable nickel-rich lithium-ion batteries[J]. Applied Surface Science, 2023, 624: 157027.
HU Y, ZHANG Z H, WANG H M. Fast-charging electrolyte: A multiple additives strategy with 1,3,2-dioxathiolane 2,2-dioxide and lithium difluorophosphate for commercial graphite/LiFePO4 pouch battery[J]. ChemistrySelect, 2022, 7(19): e202200740.
GUO L Y, HUANG F F, CAI M Z, et al. Organic-inorganic hybrid SEI induced by a new lithium salt for high-performance metallic lithium anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 32886-32893.
... [18]和(b) 还原性气体[19]在正负极间的串扰反应;不同电池的(c) 热失控气体组分、(d) 爆炸指数和(e) 层流燃烧速度[52]Cross-talk of (a) O2[18] and (b) reductive gas[19] between cathode and anode in Li-ion battery; (c) The gas composition during thermal runaway, (d) explosion index and (e) Laminar flame-speed for batteries with different cathodes[52]Fig. 62 基于电解液视角的产气抑制策略
... [18] and (b) reductive gas[19] between cathode and anode in Li-ion battery; (c) The gas composition during thermal runaway, (d) explosion index and (e) Laminar flame-speed for batteries with different cathodes[52]Fig. 62 基于电解液视角的产气抑制策略
... [19]在正负极间的串扰反应;不同电池的(c) 热失控气体组分、(d) 爆炸指数和(e) 层流燃烧速度[52]Cross-talk of (a) O2[18] and (b) reductive gas[19] between cathode and anode in Li-ion battery; (c) The gas composition during thermal runaway, (d) explosion index and (e) Laminar flame-speed for batteries with different cathodes[52]Fig. 62 基于电解液视角的产气抑制策略
... [19] between cathode and anode in Li-ion battery; (c) The gas composition during thermal runaway, (d) explosion index and (e) Laminar flame-speed for batteries with different cathodes[52]Fig. 62 基于电解液视角的产气抑制策略
(a), (b) Schematic for the diffusion of R-H+ from cathode to anode and the effect of temperature and voltage on the evolution of H2[25]; (c) Generation of H2 by a "double crossover-double catalysis" process during solvent decomposition[38] and (d) through chemical reaction between PVDF and Li dendrites on lithiated graphite anode[24]Fig. 11.1.3 黏结剂的分解
... [25];(c) 溶剂分解产生H2 的“双穿梭-双催化”机制[38];(d) 锂化石墨负极表面锂枝晶与PVDF反应生成H2 的机制[24](a), (b) Schematic for the diffusion of R-H+ from cathode to anode and the effect of temperature and voltage on the evolution of H2[25]; (c) Generation of H2 by a "double crossover-double catalysis" process during solvent decomposition[38] and (d) through chemical reaction between PVDF and Li dendrites on lithiated graphite anode[24]Fig. 11.1.3 黏结剂的分解
... [25]; (c) Generation of H2 by a "double crossover-double catalysis" process during solvent decomposition[38] and (d) through chemical reaction between PVDF and Li dendrites on lithiated graphite anode[24]Fig. 11.1.3 黏结剂的分解
... [38];(d) 锂化石墨负极表面锂枝晶与PVDF反应生成H2 的机制[24](a), (b) Schematic for the diffusion of R-H+ from cathode to anode and the effect of temperature and voltage on the evolution of H2[25]; (c) Generation of H2 by a "double crossover-double catalysis" process during solvent decomposition[38] and (d) through chemical reaction between PVDF and Li dendrites on lithiated graphite anode[24]Fig. 11.1.3 黏结剂的分解
(a) Main generation mechanism of CO2 in lithium-ion battery; (b) Oxidation of conductive carbon under the catalysis of H2O[42]; (c), (d) Generation of CO2 from the decomposition of Li2CO3 on cathodic surface[45, 47]; (e) Two types of solvent oxidation to form CO2[48]Fig. 51.5.1 导电炭黑的氧化
... [42]; (c), (d) Generation of CO2 from the decomposition of Li2CO3 on cathodic surface[45, 47]; (e) Two types of solvent oxidation to form CO2[48]Fig. 51.5.1 导电炭黑的氧化
(a) Main generation mechanism of CO2 in lithium-ion battery; (b) Oxidation of conductive carbon under the catalysis of H2O[42]; (c), (d) Generation of CO2 from the decomposition of Li2CO3 on cathodic surface[45, 47]; (e) Two types of solvent oxidation to form CO2[48]Fig. 51.5.1 导电炭黑的氧化
(a) Main generation mechanism of CO2 in lithium-ion battery; (b) Oxidation of conductive carbon under the catalysis of H2O[42]; (c), (d) Generation of CO2 from the decomposition of Li2CO3 on cathodic surface[45, 47]; (e) Two types of solvent oxidation to form CO2[48]Fig. 51.5.1 导电炭黑的氧化
(a) Main generation mechanism of CO2 in lithium-ion battery; (b) Oxidation of conductive carbon under the catalysis of H2O[42]; (c), (d) Generation of CO2 from the decomposition of Li2CO3 on cathodic surface[45, 47]; (e) Two types of solvent oxidation to form CO2[48]Fig. 51.5.1 导电炭黑的氧化
... [52]Cross-talk of (a) O2[18] and (b) reductive gas[19] between cathode and anode in Li-ion battery; (c) The gas composition during thermal runaway, (d) explosion index and (e) Laminar flame-speed for batteries with different cathodes[52]Fig. 62 基于电解液视角的产气抑制策略
... 电池中无法根除的痕量水不仅可以在电极表面发生电化学分解产生气体,还会引发LiPF6逐步水解产生大量HF,破坏SEI界面加速电解液分解[图7(a)][53].此外水还可以直接攻击SEI界面中的ROCO2Li产生ROH、Li2CO3和CO2气体[54].常用的除水抑酸类添加剂主要为硅氮烷、硅氧烷、亚磷酸酯以及含氮化合物[图7(b)].硅氮烷中的Si—N键可以和水反应抑制LiPF6的水解,如三甲基硅基咪唑[55]、三甲基硅基𫫇唑烷酮[56].硅氧烷中的Si—O键可以与H2O反应生成—(Si—O) n —,或与HF反应生成Si—F键,如二甲基二苯氧基硅烷[57].亚磷酸酯中的P(Ⅲ)以及含氮化合物中的N原子由于具有孤对电子因而可以络合HF和H2O中的氢原子,如N-乙酰己内酰胺[58]、环戊基异氰酸酯[59],多种官能团的复合则具有更强的除水抑酸效果[60]. ...
... [53];(b) 除水抑酸类电解液添加剂作用机制;(c) 亚磷酸酯和含硼化合物作为添加剂吸附电解液中O2 和⋅O2-[53](a) HF arisen from the hydrolysis of LiPF6[53]; (b) Mechanism of electrolyte additives scavenging H2O and HF in electrolyte; (c) Phosphite and borane as additives scavenging O2 or ·O2-in electrolyte[53]Fig. 72.1.2 活性氧清除剂的使用
... [53](a) HF arisen from the hydrolysis of LiPF6[53]; (b) Mechanism of electrolyte additives scavenging H2O and HF in electrolyte; (c) Phosphite and borane as additives scavenging O2 or ·O2-in electrolyte[53]Fig. 72.1.2 活性氧清除剂的使用
... [53]; (b) Mechanism of electrolyte additives scavenging H2O and HF in electrolyte; (c) Phosphite and borane as additives scavenging O2 or ·O2-in electrolyte[53]Fig. 72.1.2 活性氧清除剂的使用
... 电池中无法根除的痕量水不仅可以在电极表面发生电化学分解产生气体,还会引发LiPF6逐步水解产生大量HF,破坏SEI界面加速电解液分解[图7(a)][53].此外水还可以直接攻击SEI界面中的ROCO2Li产生ROH、Li2CO3和CO2气体[54].常用的除水抑酸类添加剂主要为硅氮烷、硅氧烷、亚磷酸酯以及含氮化合物[图7(b)].硅氮烷中的Si—N键可以和水反应抑制LiPF6的水解,如三甲基硅基咪唑[55]、三甲基硅基𫫇唑烷酮[56].硅氧烷中的Si—O键可以与H2O反应生成—(Si—O) n —,或与HF反应生成Si—F键,如二甲基二苯氧基硅烷[57].亚磷酸酯中的P(Ⅲ)以及含氮化合物中的N原子由于具有孤对电子因而可以络合HF和H2O中的氢原子,如N-乙酰己内酰胺[58]、环戊基异氰酸酯[59],多种官能团的复合则具有更强的除水抑酸效果[60]. ...
1
... 电池中无法根除的痕量水不仅可以在电极表面发生电化学分解产生气体,还会引发LiPF6逐步水解产生大量HF,破坏SEI界面加速电解液分解[图7(a)][53].此外水还可以直接攻击SEI界面中的ROCO2Li产生ROH、Li2CO3和CO2气体[54].常用的除水抑酸类添加剂主要为硅氮烷、硅氧烷、亚磷酸酯以及含氮化合物[图7(b)].硅氮烷中的Si—N键可以和水反应抑制LiPF6的水解,如三甲基硅基咪唑[55]、三甲基硅基𫫇唑烷酮[56].硅氧烷中的Si—O键可以与H2O反应生成—(Si—O) n —,或与HF反应生成Si—F键,如二甲基二苯氧基硅烷[57].亚磷酸酯中的P(Ⅲ)以及含氮化合物中的N原子由于具有孤对电子因而可以络合HF和H2O中的氢原子,如N-乙酰己内酰胺[58]、环戊基异氰酸酯[59],多种官能团的复合则具有更强的除水抑酸效果[60]. ...
1
... 电池中无法根除的痕量水不仅可以在电极表面发生电化学分解产生气体,还会引发LiPF6逐步水解产生大量HF,破坏SEI界面加速电解液分解[图7(a)][53].此外水还可以直接攻击SEI界面中的ROCO2Li产生ROH、Li2CO3和CO2气体[54].常用的除水抑酸类添加剂主要为硅氮烷、硅氧烷、亚磷酸酯以及含氮化合物[图7(b)].硅氮烷中的Si—N键可以和水反应抑制LiPF6的水解,如三甲基硅基咪唑[55]、三甲基硅基𫫇唑烷酮[56].硅氧烷中的Si—O键可以与H2O反应生成—(Si—O) n —,或与HF反应生成Si—F键,如二甲基二苯氧基硅烷[57].亚磷酸酯中的P(Ⅲ)以及含氮化合物中的N原子由于具有孤对电子因而可以络合HF和H2O中的氢原子,如N-乙酰己内酰胺[58]、环戊基异氰酸酯[59],多种官能团的复合则具有更强的除水抑酸效果[60]. ...
1
... 电池中无法根除的痕量水不仅可以在电极表面发生电化学分解产生气体,还会引发LiPF6逐步水解产生大量HF,破坏SEI界面加速电解液分解[图7(a)][53].此外水还可以直接攻击SEI界面中的ROCO2Li产生ROH、Li2CO3和CO2气体[54].常用的除水抑酸类添加剂主要为硅氮烷、硅氧烷、亚磷酸酯以及含氮化合物[图7(b)].硅氮烷中的Si—N键可以和水反应抑制LiPF6的水解,如三甲基硅基咪唑[55]、三甲基硅基𫫇唑烷酮[56].硅氧烷中的Si—O键可以与H2O反应生成—(Si—O) n —,或与HF反应生成Si—F键,如二甲基二苯氧基硅烷[57].亚磷酸酯中的P(Ⅲ)以及含氮化合物中的N原子由于具有孤对电子因而可以络合HF和H2O中的氢原子,如N-乙酰己内酰胺[58]、环戊基异氰酸酯[59],多种官能团的复合则具有更强的除水抑酸效果[60]. ...
1
... 电池中无法根除的痕量水不仅可以在电极表面发生电化学分解产生气体,还会引发LiPF6逐步水解产生大量HF,破坏SEI界面加速电解液分解[图7(a)][53].此外水还可以直接攻击SEI界面中的ROCO2Li产生ROH、Li2CO3和CO2气体[54].常用的除水抑酸类添加剂主要为硅氮烷、硅氧烷、亚磷酸酯以及含氮化合物[图7(b)].硅氮烷中的Si—N键可以和水反应抑制LiPF6的水解,如三甲基硅基咪唑[55]、三甲基硅基𫫇唑烷酮[56].硅氧烷中的Si—O键可以与H2O反应生成—(Si—O) n —,或与HF反应生成Si—F键,如二甲基二苯氧基硅烷[57].亚磷酸酯中的P(Ⅲ)以及含氮化合物中的N原子由于具有孤对电子因而可以络合HF和H2O中的氢原子,如N-乙酰己内酰胺[58]、环戊基异氰酸酯[59],多种官能团的复合则具有更强的除水抑酸效果[60]. ...
1
... 电池中无法根除的痕量水不仅可以在电极表面发生电化学分解产生气体,还会引发LiPF6逐步水解产生大量HF,破坏SEI界面加速电解液分解[图7(a)][53].此外水还可以直接攻击SEI界面中的ROCO2Li产生ROH、Li2CO3和CO2气体[54].常用的除水抑酸类添加剂主要为硅氮烷、硅氧烷、亚磷酸酯以及含氮化合物[图7(b)].硅氮烷中的Si—N键可以和水反应抑制LiPF6的水解,如三甲基硅基咪唑[55]、三甲基硅基𫫇唑烷酮[56].硅氧烷中的Si—O键可以与H2O反应生成—(Si—O) n —,或与HF反应生成Si—F键,如二甲基二苯氧基硅烷[57].亚磷酸酯中的P(Ⅲ)以及含氮化合物中的N原子由于具有孤对电子因而可以络合HF和H2O中的氢原子,如N-乙酰己内酰胺[58]、环戊基异氰酸酯[59],多种官能团的复合则具有更强的除水抑酸效果[60]. ...
1
... 电池中无法根除的痕量水不仅可以在电极表面发生电化学分解产生气体,还会引发LiPF6逐步水解产生大量HF,破坏SEI界面加速电解液分解[图7(a)][53].此外水还可以直接攻击SEI界面中的ROCO2Li产生ROH、Li2CO3和CO2气体[54].常用的除水抑酸类添加剂主要为硅氮烷、硅氧烷、亚磷酸酯以及含氮化合物[图7(b)].硅氮烷中的Si—N键可以和水反应抑制LiPF6的水解,如三甲基硅基咪唑[55]、三甲基硅基𫫇唑烷酮[56].硅氧烷中的Si—O键可以与H2O反应生成—(Si—O) n —,或与HF反应生成Si—F键,如二甲基二苯氧基硅烷[57].亚磷酸酯中的P(Ⅲ)以及含氮化合物中的N原子由于具有孤对电子因而可以络合HF和H2O中的氢原子,如N-乙酰己内酰胺[58]、环戊基异氰酸酯[59],多种官能团的复合则具有更强的除水抑酸效果[60]. ...
(a) Summary of gas generation from solvents in electrolytes; (b) Adopting three types of lithium salts in electrolyte to improve thermal stability of NCM811/Gr pouch cell[63]; (c) EMD(EMC/DMC/DEC)-LiNO3 electrolyte to enhance cycling stability at 2.8~4.4 V in NCM811/Gr cell[64]Fig. 8
(a) Summary of gas generation from solvents in electrolytes; (b) Adopting three types of lithium salts in electrolyte to improve thermal stability of NCM811/Gr pouch cell[63]; (c) EMD(EMC/DMC/DEC)-LiNO3 electrolyte to enhance cycling stability at 2.8~4.4 V in NCM811/Gr cell[64]Fig. 8
... 传统商用添加剂虽然具备优异的成膜特性,但也存在一定缺陷,因而需要开发新型添加剂.PS作为电解液中抑制电池产气效果最优的添加剂,由于致癌性受到欧盟管控,因此我们开发四乙烯基硅烷(TVS)作为替代品,可以参与正负极成膜形成锂离子传导率高的硅烷聚合物,显著抑制电池产气以及高温存储过程中的阻抗增长[图10(a)、(b)][76].三苯基亚磷酸酯作为商用电解液中优异的除水抑酸添加剂对电池寿命存在劣化效果,使用三呋喃基亚磷酸酯(FuP)作为替代品,可以在保留添加剂除水抑酸功能的同时,优先于溶剂在正负极成膜改善电池高温性能[图10(c)][77].另一方面,添加剂的合理组合使用可以得到稳固且阻抗低的SEI界面,将有机硫酸酯DTD与无机锂盐LiDFP联用,可以在含LiF和Li x PO y F z 的SEI中引入Li2SO4和ROSO2Li,抑制电池在循环过程中的产气并降低阻抗提升快充性能[图10(d)、(e)][78].采用LiDFOP与二氧戊环(DOL)联用则可以引发DOL聚合形成富含LiF和Li x PO y F z 的无机-有机复合SEI[图10(f)][79]. ...
... [76];(c) FuP的理论和实际分解电位[77];(d) DTD与LiDFP联用对循环过程中SEI组分影响推测图以及(e) DTD与LiDFP联用抑制循环产气[78];(f) LiDFOP与DOL联用修饰SEI组分[79](a) TVS reduces gas generation in lithium ion battery and; (b) The mechanism of TVS forming films on cathode and anode[76]; (c) Theoretical and practical decomposition potential of FuP[77]; (d) SEI component and (e) volume change of DTD+LiDFP based battery during cycling[78]; (f) Organic-inorganic hybrid SEI induced by a LiDFOP and DOL[79]Fig. 103 总结与展望
... [76]; (c) Theoretical and practical decomposition potential of FuP[77]; (d) SEI component and (e) volume change of DTD+LiDFP based battery during cycling[78]; (f) Organic-inorganic hybrid SEI induced by a LiDFOP and DOL[79]Fig. 103 总结与展望
... 传统商用添加剂虽然具备优异的成膜特性,但也存在一定缺陷,因而需要开发新型添加剂.PS作为电解液中抑制电池产气效果最优的添加剂,由于致癌性受到欧盟管控,因此我们开发四乙烯基硅烷(TVS)作为替代品,可以参与正负极成膜形成锂离子传导率高的硅烷聚合物,显著抑制电池产气以及高温存储过程中的阻抗增长[图10(a)、(b)][76].三苯基亚磷酸酯作为商用电解液中优异的除水抑酸添加剂对电池寿命存在劣化效果,使用三呋喃基亚磷酸酯(FuP)作为替代品,可以在保留添加剂除水抑酸功能的同时,优先于溶剂在正负极成膜改善电池高温性能[图10(c)][77].另一方面,添加剂的合理组合使用可以得到稳固且阻抗低的SEI界面,将有机硫酸酯DTD与无机锂盐LiDFP联用,可以在含LiF和Li x PO y F z 的SEI中引入Li2SO4和ROSO2Li,抑制电池在循环过程中的产气并降低阻抗提升快充性能[图10(d)、(e)][78].采用LiDFOP与二氧戊环(DOL)联用则可以引发DOL聚合形成富含LiF和Li x PO y F z 的无机-有机复合SEI[图10(f)][79]. ...
... [76];(c) FuP的理论和实际分解电位[77];(d) DTD与LiDFP联用对循环过程中SEI组分影响推测图以及(e) DTD与LiDFP联用抑制循环产气[78];(f) LiDFOP与DOL联用修饰SEI组分[79](a) TVS reduces gas generation in lithium ion battery and; (b) The mechanism of TVS forming films on cathode and anode[76]; (c) Theoretical and practical decomposition potential of FuP[77]; (d) SEI component and (e) volume change of DTD+LiDFP based battery during cycling[78]; (f) Organic-inorganic hybrid SEI induced by a LiDFOP and DOL[79]Fig. 103 总结与展望
... [76]; (c) Theoretical and practical decomposition potential of FuP[77]; (d) SEI component and (e) volume change of DTD+LiDFP based battery during cycling[78]; (f) Organic-inorganic hybrid SEI induced by a LiDFOP and DOL[79]Fig. 103 总结与展望
... 传统商用添加剂虽然具备优异的成膜特性,但也存在一定缺陷,因而需要开发新型添加剂.PS作为电解液中抑制电池产气效果最优的添加剂,由于致癌性受到欧盟管控,因此我们开发四乙烯基硅烷(TVS)作为替代品,可以参与正负极成膜形成锂离子传导率高的硅烷聚合物,显著抑制电池产气以及高温存储过程中的阻抗增长[图10(a)、(b)][76].三苯基亚磷酸酯作为商用电解液中优异的除水抑酸添加剂对电池寿命存在劣化效果,使用三呋喃基亚磷酸酯(FuP)作为替代品,可以在保留添加剂除水抑酸功能的同时,优先于溶剂在正负极成膜改善电池高温性能[图10(c)][77].另一方面,添加剂的合理组合使用可以得到稳固且阻抗低的SEI界面,将有机硫酸酯DTD与无机锂盐LiDFP联用,可以在含LiF和Li x PO y F z 的SEI中引入Li2SO4和ROSO2Li,抑制电池在循环过程中的产气并降低阻抗提升快充性能[图10(d)、(e)][78].采用LiDFOP与二氧戊环(DOL)联用则可以引发DOL聚合形成富含LiF和Li x PO y F z 的无机-有机复合SEI[图10(f)][79]. ...
... [77];(d) DTD与LiDFP联用对循环过程中SEI组分影响推测图以及(e) DTD与LiDFP联用抑制循环产气[78];(f) LiDFOP与DOL联用修饰SEI组分[79](a) TVS reduces gas generation in lithium ion battery and; (b) The mechanism of TVS forming films on cathode and anode[76]; (c) Theoretical and practical decomposition potential of FuP[77]; (d) SEI component and (e) volume change of DTD+LiDFP based battery during cycling[78]; (f) Organic-inorganic hybrid SEI induced by a LiDFOP and DOL[79]Fig. 103 总结与展望
... [77]; (d) SEI component and (e) volume change of DTD+LiDFP based battery during cycling[78]; (f) Organic-inorganic hybrid SEI induced by a LiDFOP and DOL[79]Fig. 103 总结与展望
... 传统商用添加剂虽然具备优异的成膜特性,但也存在一定缺陷,因而需要开发新型添加剂.PS作为电解液中抑制电池产气效果最优的添加剂,由于致癌性受到欧盟管控,因此我们开发四乙烯基硅烷(TVS)作为替代品,可以参与正负极成膜形成锂离子传导率高的硅烷聚合物,显著抑制电池产气以及高温存储过程中的阻抗增长[图10(a)、(b)][76].三苯基亚磷酸酯作为商用电解液中优异的除水抑酸添加剂对电池寿命存在劣化效果,使用三呋喃基亚磷酸酯(FuP)作为替代品,可以在保留添加剂除水抑酸功能的同时,优先于溶剂在正负极成膜改善电池高温性能[图10(c)][77].另一方面,添加剂的合理组合使用可以得到稳固且阻抗低的SEI界面,将有机硫酸酯DTD与无机锂盐LiDFP联用,可以在含LiF和Li x PO y F z 的SEI中引入Li2SO4和ROSO2Li,抑制电池在循环过程中的产气并降低阻抗提升快充性能[图10(d)、(e)][78].采用LiDFOP与二氧戊环(DOL)联用则可以引发DOL聚合形成富含LiF和Li x PO y F z 的无机-有机复合SEI[图10(f)][79]. ...
... [78];(f) LiDFOP与DOL联用修饰SEI组分[79](a) TVS reduces gas generation in lithium ion battery and; (b) The mechanism of TVS forming films on cathode and anode[76]; (c) Theoretical and practical decomposition potential of FuP[77]; (d) SEI component and (e) volume change of DTD+LiDFP based battery during cycling[78]; (f) Organic-inorganic hybrid SEI induced by a LiDFOP and DOL[79]Fig. 103 总结与展望
... 传统商用添加剂虽然具备优异的成膜特性,但也存在一定缺陷,因而需要开发新型添加剂.PS作为电解液中抑制电池产气效果最优的添加剂,由于致癌性受到欧盟管控,因此我们开发四乙烯基硅烷(TVS)作为替代品,可以参与正负极成膜形成锂离子传导率高的硅烷聚合物,显著抑制电池产气以及高温存储过程中的阻抗增长[图10(a)、(b)][76].三苯基亚磷酸酯作为商用电解液中优异的除水抑酸添加剂对电池寿命存在劣化效果,使用三呋喃基亚磷酸酯(FuP)作为替代品,可以在保留添加剂除水抑酸功能的同时,优先于溶剂在正负极成膜改善电池高温性能[图10(c)][77].另一方面,添加剂的合理组合使用可以得到稳固且阻抗低的SEI界面,将有机硫酸酯DTD与无机锂盐LiDFP联用,可以在含LiF和Li x PO y F z 的SEI中引入Li2SO4和ROSO2Li,抑制电池在循环过程中的产气并降低阻抗提升快充性能[图10(d)、(e)][78].采用LiDFOP与二氧戊环(DOL)联用则可以引发DOL聚合形成富含LiF和Li x PO y F z 的无机-有机复合SEI[图10(f)][79]. ...
... [79](a) TVS reduces gas generation in lithium ion battery and; (b) The mechanism of TVS forming films on cathode and anode[76]; (c) Theoretical and practical decomposition potential of FuP[77]; (d) SEI component and (e) volume change of DTD+LiDFP based battery during cycling[78]; (f) Organic-inorganic hybrid SEI induced by a LiDFOP and DOL[79]Fig. 103 总结与展望