[1] WAGNER C. The electrical conductivity of semi-conductors involving inclusions of another phase[J]. Journal of Physics and Chemistry of Solids,1972,33(5):1051-1059.
[2] JOW T,WAGNER J B. The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride[J]. Journal of the Electrochemical Society,1979,126(11):1963-1972.
[3] MAIER J. Ionic conduction in space charge regions[J]. Progress in Solid State Chemistry,1995,23(3):171-263.
[4] MAIER J. Nanoionics:Ion transport and electrochemical storage in confined systems[J]. Nature Materials,2005,4(11):805-815.
[5] ZHUKOVSKII Y F,BALAYA P,KOTOMIN E A,et al. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations[J]. Physical Review Letters,2006,96(5):doi: 10.1103/PhysRevLett.96.058302.
[6] TULLER H L. Ionic conduction in nanocrystalline materials[J]. Solid State Ionics,2000,131(1):143-157.
[7] SCHOONMAN J. Nanostructured materials in solid state ionics[J]. Solid State Ionics,2000,135(1):5-19.
[8] BALAYA P,JAMNIK J,FLEIG J,et al. Mesoscopic electrical conduction in nanocrystalline SrTiO3[J]. Applied Physics Letters,2006,88(6):doi: 10.1063/1.2171798.
[9] KIM S,MAIER J. On the conductivity mechanism of nanocrystalline ceria[J]. Journal of the Electrochemical Society,2002,149(10):J73-J83.
[10] GUO X,MAIER J. Grain boundary blocking effect in zirconia:A schottky barrier analysis[J]. Journal of the Electrochemical Society,2001,148(3):E121-E126.
[11] LUPETIN P,GREGORI G,MAIER J. Mesoscopic charge carriers chemistry in nanocrystalline SrTiO3[J]. Angewandte Chemie International Edition,2010,49(52):10123-10126.
[12] LI H,RICHTER G,MAIER J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries[J]. Advanced Materials,2003,15(9):736-739.
[13] GUO Y G,LEE J S,MAIER J. AgI nanoplates with mesoscopic superionic conductivity at room temperature[J]. Advanced Materials,2005,17(23):2815-2819.
[14] MAIER J. Physical chemistry of ionic materials:Ions and electrons in solids[M]. New York:John Wiley & Sons Inc.,2004.
[15] SATA N,EBERMAN K,EBERL K,et al. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures[J]. Nature,2000,408(6815):946-949.
[16] GUO X X,SATA N,MAIER J. Effects of orientation and substrate on ion transport in fluoride heterostructures grown by molecular beam epitaxy[J]. Electrochimica Acta,2004,49(7):1091-1096.
[17] GUO X X,MAIER J. Ionic conductivity of epitactic MBE-grown BaF2 films[J]. Surface Science,2004,549(3):211-216.
[18] JAMNIK J. Impact of particle size on conductivity and storage capacity as derived from the core-space charge model[J]. Solid State Ionics,2006,177(26):2543-2547.
[19] TSCHÖPE A,SOMMER E,BIRRINGER R. Grain size-dependent electrical conductivity of polycrystalline cerium oxide:I. Experiments[J]. Solid State Ionics,2001,139(3):255-265.
[20] GIL Y,UMURHAN O M,RIESS I. Properties of solid state devices with mobile ionic defects. Part I:The effects of motion, space charge and contact potential in metal| semiconductor| metal devices[J]. Solid State Ionics,2007,178(1):1-12.
[21] GUO X,WASER R. Electrical properties of the grain boundaries of oxygen ion conductors:Acceptor-doped zirconia and ceria[J]. Progress in Materials Science,2006,51(2):151-210.
[22] HARUYAMA J,SODEYAMA K,HAN L,et al. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chemistry of Materials,2014,26(14):4248-4255.
[23] MAIER J. Space charge regions in solid two phase systems and their conduction contribution—II contact equilibrium at the interface of two ionic conductors and the related conductivity effect[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie,1985,89(4):355-362.
[24] MAIER J. Defect chemistry and conductivity effects in heterogeneous solid electrolytes[J]. Journal of the Electrochemical Society,1987,134(6):1524-1535.
[25] JAMNIK J,MAIER J,PEJOVNIK S. Interfaces in solid ionic conductors:Equilibrium and small signal picture[J]. Solid State Ionics,1995,75:51-58.
[26] GOUY G. Sur la constitution de la charge electrique a la surface d'un électrolyte[J]. Journal De Physique Théorique Et Appliquée,1910,9(4):457-468.
[27] CHAPMAN D L. LI. A contribution to the theory of electrocapillarity[J]. Philosophical Magazine Series 6,1913,25(148):475-481.
[28] SZE S M,NG K K. Physics of semiconductor devices[M]. New York:John Wiley & Sons Inc.,2006.
[29] SCHOTTKY W. Statistische halbleiterprobleme[M]. Germany:Springer Berlin Heidelberg,1954.
[30] LIANG C C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes[J]. Journal of the Electrochemical Society,1973,120(10):1289-1292.
[31] YAMADA H,BHATTACHARYYA A J,MAIER J. Extremely high silver ionic conductivity in composites of silver halide (AgBr, AgI) and mesoporous alumina[J]. Advanced Functional Materials,2006,16(4):525-530.
[32] BHATTACHARYYA A J,MAIER J. Second phase effects on the conductivity of non-aqueous salt solutions:“Soggy sand electrolytes”[J]. Advanced Materials,2004,16(9/10):811-814.
[33] PFAFFENHUBER C,GÖBEL M,POPOVIC J,et al. Soggy-sand electrolytes:Status and perspectives[J]. Physical Chemistry Chemical Physics,2013,15(42):18318-18335.
[34] JAMNIK J,MAIER J. Nanocrystallinity effects in lithium battery materials aspects of nano-ionics. Part IV[J]. Physical Chemistry Chemical Physics,2003,5(23):5215-5220.
[35] YU X Q,SUN J P,TANG K,et al. Reversible lithium storage in LiF/Ti nanocomposites[J]. Physical Chemistry Chemical Physics,2009,11(41):9497-9503.
[36] FU L,CHEN C C,SAMUELIS D,et al. Thermodynamics of lithium storage at abrupt junctions:Modeling and experimental evidence[J]. Physical Review Letters,2014,112(20):doi: 10.1103/PhysRevLett. 112.208301.
[37] 郑浩. 全固态锂空气电池和新型薄膜固态电解质研究[D]. 北京:中国科学院大学,2015.
ZHENG Hao. Research on all solid state lithium air battery and new film solid electrolyte[D]. Beijing:Institute of Physics Chinese Academy of Sciences,2015.
[38] GUO X X,MATEI I,LEE J S,et al. Ion conduction across nanosized CaF2/BaF2 multilayer heterostructures[J]. Applied Physics Letters,2007,91(10):doi: 10.1063/1.2779254.
[39] GUO X X,MATEI I,JAMNIK J,et al. Defect chemical modeling of mesoscopic ion conduction in nanosized CaF2/BaF2 multilayer heterostructures[J]. Physical Review B,2007,76(12):doi: 10.1103/PhysRevB.76.125429.
[40] GUO X X,MAIER J. Comprehensive modeling of ion conduction of nanosized CaF2/BaF2 multilayer heterostructures[J]. Advanced Functional Materials,2009,19(1):96-101.
[41] GUO X,MAIER J. Ionically conducting two-dimensional heterostructures[J]. Advanced Materials,2009,21(25/26):2619-2631.
[42] BAIUTTI F,LOGVENOV G,GREGORI G,et al. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping[J]. Nature Communications,2015,6:doi:10.1038/ncomms9586.
[43] SEINO Y,TAKADA K,KIM B C,et al. Synthesis of phosphorous sulfide solid electrolyte and all-solid-state lithium batteries with graphite electrode[J]. Solid State Ionics,2005,176(31):2389-2393.
[44] KIM B C,TAKADA K,OHTA N,et al. All solid state Li-ion secondary battery with FeS anode[J]. Solid State Ionics,2005,176(31):2383-2387.
[45] MATSUMURA T,NAKANO K,KANNO R,et al. Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries[J]. Journal of Power Sources,2007,174(2):632-636.
[46] TAKADA K,AOTANI N,IWAMOTO K,et al. Electrochemical behavior of LixMO2(M= Co, Ni) in all solid state cells using a glass electrolyte[J]. Solid State Ionics,1995,79:284-287.
[47] TAKADA K. Progress and prospective of solid-state lithium batteries[J]. Acta Materialia,2013,61(3):759-770.
[48] SEINO Y,OTA T,TAKADA K. High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte[J]. Journal of Power Sources,2011,196(15):6488-6492.
[49] OHTA N,TAKADA K,ZHANG L,et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Advanced Materials,2006,18(17):2226-2229.
[50] OHTA N,TAKADA K,SAKAGUCHI I,et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochemistry Communications,2007,9(7):1486-1490.
[51] TAKADA K,OHTA N,ZHANG L,et al. Interfacial modification for high-power solid-state lithium batteries[J]. Solid State Ionics,2008,179(27):1333-1337.
[52] SAKUDA A,KITAURA H,HAYASHI A,et al. Modification of interface between LiCoO2 electrode and Li2S-P2S5 solid electrolyte using Li2O-SiO2 glassy layers[J]. Journal of the Electrochemical Society,2009,156(1):A27-A32.
[53] XU X,TAKADA K,WATANABE K,et al. Self-organized core-shell structure for high-power electrode in solid-state lithium batteries[J]. Chemistry of Materials,2011,23(17):3798-3804.
[54] YAMADA H,TSUNOE D,SHIRAISHI S,et al. Reduced grain boundary resistance by surface modification[J]. The Journal of Physical Chemistry C,2015,119(10):5412-5419.
[55] YAMADA H,OGA Y,SARUWATARI I,et al. Local structure and ionic conduction at interfaces of electrode and solid electrolytes[J]. Journal of the Electrochemical Society,2012,159(4):A380-A385.
[56] AGOSTINI M,AIHARA Y,YAMADA T,et al. A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte[J]. Solid State Ionics,2013,244:48-51.
[57] HARUTA M,SHIRAKI S,SUZUKI T,et al. Negligible “negative space-charge layer effects” at oxide-electrolyte/electrode interfaces of thin-film batteries[J]. Nano Letters,2015,15(3):1498-1502.
[58] YAMAMOTO K,IRIYAMA Y,ASAKA T,et al. Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery[J]. Angewandte Chemie International Edition,2010,49(26):4414-4417.
[59] YAMAMOTO K,IRIYAMA Y,ASAKA T,et al. Direct observation of lithium-ion movement around an in-situ-formed-negative- electrode/solid-state-electrolyte interface during initial charge- discharge reaction[J]. Electrochemistry Communications,2012,20:113-116.
[60] YAMAMOTO K,YOSHIDA R,SATO T,et al. Nano-scale simultaneous observation of Li-concentration profile and Ti-, O electronic structure changes in an all-solid-state Li-ion battery by spatially-resolved electron energy-loss spectroscopy[J]. Journal of Power Sources,2014,266:414-421. |